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Abstract. We introduce the notion of independent sequences with respect to a mono-
mial order by using the least terms of polynomials vanishing at the sequence. Our main
result shows that the Krull dimension of a Noetherian ring is equal to the supremum
of the length of independent sequences. The proof has led to other notions of indepen-
dent sequences, which have interesting applications. For example, we can show that
dimR/0 : J∞ is the maximum number of analytically independent elements in an arbi-
trary ideal J of a local ring R and that dimB ≤ dimA if B ⊂ A are (not necessarily
finitely generated) subalgebras of a finitely generated algebra over a Noetherian Jacobson
ring.

Introduction

Let R be an arbitrary Noetherian ring, where a ring is always assumed to be commu-
tative with identity. The aim of this paper is to characterize the Krull dimension dimR
by means of a monomial order on polynomial rings over R. We are inspired of a result of
Lombardi in [13] (see also Coquand and Lombardi [4], [5]) which says that for a positive
integer s, dimR < s if and only if for every sequence of elements a1, . . . , as in R, there
exist nonnegative integers m1, . . . ,ms and elements c1, . . . , cs ∈ R such that

am1
1 · · · a

ms
s + c1a

m1+1
1 + c2a

m1
1 am2+1

2 + · · ·+ csa
m1
1 · · · a

ms−1

s−1 ams+1
s = 0.

This result has helped to develop a constructive theory for the Krull dimension [6], [7],
[8].

The above relation means that a1, . . . , as is a solution of the polynomial

xm1
1 · · ·x

ms
s + c1x

m1+1
1 + c2x

m1
1 xm2+1

2 + · · ·+ csx
m1
1 · · ·x
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s−1 xms+1
s .

The least term of this polynomial with respect to the lexicographic order is the monomial
xm1
1 · · ·xms

s , which has the coefficient 1. This interpretation leads us to introduce the
following notion.

Let ≺ be a monomial order on the polynomial ring R[x1, x2, . . .] with infinitely many
variables. For every polynomial f we write in≺(f) for the least term of f with respect to
≺. Let R[X] = R[x1, . . . , xs]. We call a1, . . . , as ∈ R a dependent sequence with respect
to ≺ if there exists f ∈ R[X] vanishing at a1, . . . , as such that the coefficient of in≺(f) is
invertible. Otherwise, a1, . . . , as is called an independent sequence with respect to ≺.

Using this notion, we can reformulate Lombardi’s result as dimR < s if and only if every
sequence of elements a1, . . . , as in R is dependent with respect to the lexicographic order.
Out of this reformulation arises the question whether one can replace the lexicographical
monomial order by other monomial orders. The proof of Lombardi does not reveal how
one can relate an arbitrary monomial order to the Krull dimension of the ring. We will give
a positive answer to this question by proving that dimR is the supremum of the length of
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independent sequences for an arbitrary monomial order. This follows from Theorem 2.7 of
this paper, which in fact strengthens the above statement. As an immediate consequence,
we obtain other algebraic identities between elements of R than in Lombardi’s result.
Although our results are not essentially computational, the independence conditions can
often be treated by computer calculations. For instance, using a short program written in
MAGMA [2], the first author tested millions of examples which led to the conjecture that
the above question has a positive answer [12]. The proof combines techniques of Gröbner
basis theory and the theory of associated graded rings of filtrations. It has led to other
notions of independent sequences which are of independent interest, as we shall see below.

Our idea is to replace the monomial order ≺ by a weighted degree on the monomials.
Given an infinite sequence w of positive integers w1, w2, . . ., we may consider R[x1, x2, . . .]
as a weighted graded ring with deg xi = wi, i = 1, 2, . . .. For every polynomial f , we write
inw(f) for the weighted homogeneous part of f of least degree. We call a1, . . . , as ∈ R
a weighted independent sequence with respect to w if every coefficient of inw(f) is not
invertible for all polynomials f ∈ R[X] vanishing at a1, . . . , as. Otherwise, a1, . . . , as is
called a weighted dependent sequence with respect to w. We will see that if R is a local
ring and wi = 1 for all i, the sequence a1, . . . , as is weighted independent if and only if
the elements a1, . . . , as are analytically independent, a basic notion in the theory of local
rings. That is the reason why we use the terminology independent sequence for the above
notions.

Let Q = (x1−a1, . . . , xs−as) be the ideal of polynomials of R[X] vanishing at a1, . . . , as.
Let in≺(Q) and inw(Q) denote the ideals of R[X] generated by the polynomials in≺(f) and
inw(f), f ∈ Q. We want to find a weight sequence w such that in≺(Q) = inw(Q). It is well
known in Gröbner basis theory that this can be done if in≺(Q) and inw(Q) were the largest
term or the part of largest degree of f . In our setting we can solve this problem only if ≺
is Noetherian, that is, if every monomial has only a finite number of smaller monomials.
In this case, a1, ..., as is independent with respect to w if and only if it is independent with
respect to ≺ . If ≺ is not Noetherian, we can still find a Noetherian monomial order ≺′
such that if a1, ..., as is independent with respect to ≺, then a1ai, ..., asai is independent
with respect to ≺′ for some index i. By this way, we can reduce our investigation on the
length of independent sequences to the weighted graded case.

We shall see that for every weight sequence w, inw(Q) is the defining ideal of the
associated graded ring of certain filtration of R. Using properties of this associated graded
ring we can show that the length of a weighted independent sequence is bounded above by
dimR, and that a1, . . . , as is a weighted independent sequence if ht(a1, . . . , as) = s. From
this it follows that dimR is the supremum of the length of independent sequences with
respect to w. This is formulated in more detail in Theorem 1.8 of this paper. Furthermore,
we can also show that dimR/ ∪n≥1 (0 : Jn) is the supremum of the length of weighted
independent sequences in a given ideal J . If R is a local ring, this gives a characterization
for the maximum number of analytically independent elements in J .

Since our results for independent sequences with respect to a monomial order and for
weighted independent sequences are analogous, one may ask whether there is a common
generalization. We shall see that there is a natural class of binary relations on the mono-
mials which cover both monomial orders and weighted degrees and for which the modified
statements of the above results still hold. We call such a relation a monomial preorder.
The key point is to show that a monomial preorder ≺ can be approximated by a weighted
degree sequence w. This is somewhat tricky because w has to be chosen such that in-
comparable monomials with respect to ≺ have the same weighted degree. Since monomial
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preorders are not as strict as monomial orders, these results may find applications in
computational problems.

For an algebra over a ring, we can extend the definition of independent sequences to
give a generalization of the transcendence degree. Let A be an algebra over R. Given a
monomial preorder ≺, we say that a sequence a1, . . . , as of elements of A is independent
over R with respect to ≺ if for every polynomial f ∈ R[X] vanishing at a1, . . . , an, no
coefficient of in≺(f) is invertible in R. If R is a field, this is just the usual notion of alge-
braic independence. In general, dimA is not the supremum of the length of independent
sequences over R. However, if R is a Jacobson ring and A a subfinite R-algebra, that is, a
subalgebra of a finitely generated R-algebra, we show that dimA is the supremum of the
length of independent sequences with respect to ≺. So we obtain a generalization of the
fundamental result that the transcendence degree of a finitely generated algebra over a
field equals its Krull dimension. Our result has the interesting consequence that the Krull
dimension cannot increase if one passes from a subfinite algebra over a Noetherian Jacob-
son ring to a subalgebra. For instance, if H ⊆ G ⊆ Aut(A) are groups of automorphisms
of a finitely generated Z-algebra A, then

dim
(
AG
)
≤ dim

(
AH
)
,

even though the invariant rings need not be finitely generated. We also show that the
above properties characterize Jacobson rings.

The paper is organized as follows. In Sections 1 and 2 we investigate weighted inde-
pendent sequences and independent sequences with respect to a monomial order. The
extensions of these notions for monomial preorders and for algebras over a Jacobson ring
will be treated in Sections 3 and 4, respectively.

We would like to mention that there exists an earlier version of this paper, titled “The
Transcendence Degree over a Ring” and authored by the first author [12]. This earlier
version will not be published since its results have merged into the present version.

The authors wish to thank Peter Heinig for bringing Coquand and Lombardi’s article
[5] to their attention, which initiated our investigation. They also thank José Giral, Shiro
Goto, Jürgen Klüners, Gerhard Pfister, Lorenzo Robbiano, Keiichi Watanabe for sharing
their expertise, and the referee for pointing out that Lemma 1.6 can be found in [3]. The
second author is grateful to the Mathematical Sciences Research Institute at Berkeley for
its support to his participation to the Program Commutative Algebra 2012-2013, when
part of this paper was written down. He is supported by a grant of the National Foundation
for Sciences and Technology Development of Vietnam.

1. Weighted independent sequences

In this section we will prove some basic properties of weighted independent sequences
and our aim is to show that the Krull dimension is the supremum of the length of weighted
independent sequences.

Throughout this paper, let R be a Noetherian ring. Let a1, . . . , as be a sequence of
nonzero elements of R, which are not invertible. Note that an element of R is weighted
dependent if it is zero or invertible.

First, we shall see that weighted independent sequences are a generalization of analyt-
ically independent elements. Recall that if R is a local ring, the elements a1, . . . , as are
called analytically independent if every homogeneous polynomial vanishing at a1, . . . , as
has all its coefficients in the maximal ideal, which means that they are not invertible.

Let w = 1, 1, . . ., the weight sequence with all wi = 1. The weighted degree in this
case is the usual degree. Hence inw(f) is the homogeneous part of smallest degree of a
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polynomial f . Thus, a1, . . . , as is analytically dependent if there exists a homogeneous
polynomial vanishing at a1, . . . , as which has an invertible coefficient.

Example 1.1. Let a, b be two arbitrary integers. Since the greatest common divisor of a2

and b2 divides the product ab, there exist c, d ∈ Z such that ab = ca2 + db2. This relation
shows that a, b is a weighted dependent sequence with respect to w = 1, 1, . . .

Set R[X] = R[x1, . . . , xs]. Let f ∈ R[X] be an arbitrary polynomial vanishing at
a1, . . . , as and g = inw(f), where w = 1, 1, . . .. Write every term u of f with deg u > deg g
in the form u = hv, where v is a monomial with deg v = deg g, and replace u by the term
h(a1, . . . , as)v. Then we obtain a homogeneous polynomial of the form g+a1g1+ · · ·+asgs
vanishing at a1, . . . , as. If R is a local ring, the coefficients of g are not invertible if and
only if the coefficients of g + a1g1 + · · · + asgs are not invertible. Hence a1, . . . , as is a
weighted independent sequence if and only if a1, . . . , as are analytically independent.

Unlike analytically independent elements, the notion of weighted independent sequences
depends on the order of the elements if the weight sequence w contains some distinct
numbers.

Example 1.2. Let R = K[u, v] be a polynomial ring in two indeterminates over a ring K.
The sequence uv, v is dependent with respect to the weights 1, 2 because x1−ux2 vanishes
at uv, v and inw(x1 − ux2) = x1. On the other hand, the sequence v, uv is independent
with respect to the same weights. To see this let f = (x1−v)g+(x2−uv)h be an arbitrary
polynomial of R[x1, x2] vanishing at v, uv. If vg + uvh 6= 0, inw(f) = − inw(vg + uvh),
whose coefficients are divided by v, hence not invertible. If vg + uvh = 0, g = uh and
inw(f) = inw(x1uh+ x2h) = inw(x1uh) since deg x1 = 1 < 2 = deg x2. All coefficients of
inw(x1uh) are divided by u, hence not invertible.

Let w be an arbitrary weight sequence. Let Q = (x1 − a1, . . . , xs − as), the ideal of
polynomials of R[X] vanishing at a1, . . . , as. Let C be the set of the coefficients of all
polynomials inw(f), f ∈ Q. It is easy to see that C is an ideal. Therefore, a1, . . . , as is
a weighted independent sequence with respect to w if and only if C is a proper ideal of
R. Using this characterization, we obtain the following property of weighted independent
sequences under localization.

Proposition 1.3. The sequence a1, . . . , as is weighted independent if and only if there is
a prime P of R such that a1, . . . , as is weighted independent in RP .

Proof. If a1, . . . , as is a weighted independent sequence, then C is contained in a maximal
ideal P of R. Since QP is the ideal of the polynomials in RP [X] vanishing at a1, . . . , as,
CP is the set of the coefficients of all polynomials inw(f), f ∈ QP . Since CP is a proper
ideal of RP , a1, . . . , as is a weighted independent sequence in RP .

Conversely, if a1, . . . , as is a weighted independent sequence in RP for some prime P
of R, then CP is a proper ideal and so is C, too. Therefore, a1, . . . , as is a weighted
independent sequence in R. �

Let inw(Q) denote the ideal in R[X] generated by the polynomials inw(f), f ∈ Q.
Then C is also the set of the coefficients of all polynomials in inw(Q). Therefore, weighted
independence is a property of inw(Q). We shall see that R[X]/ inw(Q) is isomorphic to
the associated graded ring of certain filtration of R.
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Let S denote the subringR[a1t
w1 , . . . , ast

ws , t−1] of the Laurent polynomial ringR[t, t−1].
Since S is a graded subring of R[t, t−1], we may write S = ⊕n∈ZInt

n. It is easy to see that

(1.1) In =
∑

m1w1 + · · ·+msws ≥ n
m1, . . . ,ms ≥ 0

am1
1 · · · a

ms
s R

for n ≥ 0 and In = R for n < 0. The ideals In, n ≥ 0, form a filtration of R. In the case
w1 = · · · = ws = 1, we have In = In, where I := (a1, . . . , as). So we may consider S as
the extended Rees algebra of this filtration.

Let G = S/t−1S. Then G ∼= ⊕n≥0In/In+1. In other words, G is the associated graded
ring of the above filtration.

Lemma 1.4. G ∼= R[X]/ inw(Q).

Proof. Let y be a new variable and consider the polynomial ring R[X, y] as weighted graded
with deg xi = wi and deg y = −1. Then we have a natural graded map R[X, y]→ S, which
sends xi to ait

wi , i = 1, . . . , s, and y to t−1. Let = denote the kernel of this map. Then
S ∼= R[X, y]/=, hence

G ∼= R[X, y]/(=, y) ∼= R[X]/ ((=, y) ∩R[X]) .

It remains to show that (=, y) ∩R[X] = inw(Q).

Let g be an arbitrary element of (=, y)∩R[X]. Then g = F +Hy for some polynomials
F ∈ = and H ∈ R[X, y]. Without loss of generality we may assume that g is nonzero and
that g and F are weighted homogeneous. Then F has the form F = g + g1y + · · ·+ gny

n,
where gi is a weighted homogeneous polynomial of R[X] with deg gi = deg g + i, i =
1, . . . , n. Set f = g+g1+ · · ·+gn. We have f(a1, . . . , as)t

deg g = F (a1t
w1 , . . . , ast

ws , t−1) =
0. Therefore, f(a1, . . . , as) = 0 and hence f ∈ Q. Since g = inw(f), g ∈ inw(Q).

Conversely, every polynomial f ∈ Q can be written in the form f = g + g1 + · · · + gn,
where g = inw(f) and gi is a weighted homogeneous polynomial with deg gi = deg g+i, i =
1, . . . , n. Set F = g+g1y+· · ·+gnyn. Then F (a1t

w1 , . . . , ast
ws , t−1) = f(a1, . . . , as)t

deg g =
0. Therefore F ∈ = and hence inw(f) = F − (g1 + · · ·+ gny

n−1)y ∈ (=, y). �

Corollary 1.5. If a1, ..., as is a weighted independent sequence, then s ≤ dimG.

Proof. Since inw(Q) ⊆ CR[X], there is a surjective map R[X]/ inw(Q) → R[X]/CR[X].
Since C is a proper ideal of R, s ≤ dimR[X]/CR[X] because R[X]/CR[X] ∼= (R/C)[X],
the polynomial ring in s variables over R/C. Thus, s ≤ dimR[X]/ inw(Q) = dimG. �

The following formula for dimG follows from a general formula for the dimension of the
associated graded ring of a filtration [3, Theorem 4.5.6(b)]. This formula is a generalization
of the well-known fact that dimG = dimR if R is a local ring and G is the associated
graded ring of an ideal (see Matsumura [14, Theorem 15.7] or Eisenbud [9, Excercise 13.8]).

Lemma 1.6. Let I = (a1, . . . , as). Then

dimG = sup{htP | P ⊇ I is a prime of R}.

As a consequence, we always have dimG ≤ dimR. Together with Corollary 1.5, this
implies that the length of a weighted independent sequence cannot exceed dimR. Now we
will show that there exist weighted independent sequences of length htP for any maximal
prime P of R.

Let bight(I) denote the big height of I, that is, the maximum height of the minimal
primes over I.
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Proposition 1.7. Let a1, . . . , as be elements of R such that bight(a1, . . . , as) = s. Then
a1, . . . , as is a weighted independent sequence with respect to every weight sequence w.

Proof. Let P be a minimal prime of I = (a1, . . . , as) with htP = s. By Proposition 1.3,
a1, . . . , as is a weighted independent sequence in R if a1, . . . , as is a weighted independent
sequence in RP . Therefore, we may assume that R is a local ring and a1, . . . , as is a system
of parameters in R. In this case, dimG = s by Lemma 1.6.

Let m be the maximal ideal of R. There exists an integer r such that mr ⊆ I. Since
I1 = I, mrIn ⊆ In+1 for all n. Therefore, mrG = 0. Hence dimG/mG = dimG = s. Let
k = R/m. By Lemma 1.4, G/mG = R[X]/(inw(Q),m) = k[X]/J for some ideal J of k[X].
If a1, . . . , as were weighted dependent, there would be a polynomial in inw(Q) which has
a coefficient not in m, implying J 6= 0 and the contradiction dim(G/mG) ≤ s− 1. �

Summing up, we obtain the following results on the Krull dimension in terms of weighted
independent sequences.

Theorem 1.8. Let R be a Noetherian ring and s a positive integer.

(a) If s ≤ dimR, there exists a sequence a1, . . . , as ∈ R that is weighted independent
with respect to every weight sequence.

(b) If s > dimR, every sequence a1, . . . , as ∈ R is weighted dependent with respect to
every weight sequence.

Proof. If s ≤ dimR, there exists a prime P in R of height s. It is a standard fact that there
exists a sequence a1, . . . , as ∈ P such that P is a minimal prime of (a1, . . . , as). Hence
(a) follows from Proposition 1.7. If s > dimR, then s > dimG by Lemma 1.6. Hence (b)
follows from Corollary 1.5. �

As a consequence, dimR is the supremum of the length of weighted independent se-
quences with respect to an arbitrary weight sequence.

Remark. A maximal weighted independent sequence need not to have length dimR. To
see that we consider a Noetherian ring that has a maximal ideal P = (a1, ..., as) with
s = htP < dimR. By Proposition 1.7, a1, . . . , as is weighted independent with respect
to every weight sequence w. It is maximal because any extended sequence a1, ..., as+1

with as+1 6∈ P is weighted dependent. This follows from the fact R = (a1, ..., as+1), which
implies that there is a polynomial f of the form 1 + c1x1 + · · · + cs+1xs+1 vanishing at
a1, ..., as+1 with inw(f) = 1.

Similarly, we can study weighted independent sequences in a given ideal J of R. Let
0 : J∞ = ∪m≥00 : Jm. Note that 0 : J∞ is the intersection of all primary components of
the zero-ideal 0R whose associated primes do not contain J and that 0 : J∞ = 0 : Jm for
m large enough.

Theorem 1.9. For every ideal J ⊆ R, dimR/0 : J∞ is the supremum of the length of
weighted independent sequences in J with respect to an arbitrary weight sequence.

Proof. Let P be a maximal prime of R/0 : J∞ and s = htP . Using Proposition 1.7 we
can find elements a1, . . . , ad in R such that their residue classes in R/0 : J∞ is a weighted
independent sequence. Choose c ∈ J such that c is not contained in any associated prime
of 0R not containing J . Then 0 : c∞ = 0 : J∞. We claim that a1c

w1 , . . . , asc
ws is a

weighted independent sequence. To see this let f be a polynomial in R[X] vanishing at
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a1c
w1 , . . . , asc

ws and r = deg inw(f). Write f in the form f = inw(f)+g1+ · · ·+gn, where
gi is a weighted homogeneous polynomial of degree r + i, i = 1, . . . , n. Then

f(a1c
w1 , . . . , asc

ws)

= cr inw(f)(a1, . . . , as) + cr+1g1(a1, . . . , as) + · · ·+ cr+ngn(a1, . . . , as) = 0.

Therefore, if we put h = inw(f) + cg1 + · · · + cngn, then h(a1, . . . , as) ∈ 0 : cd ⊆ 0 : J∞

and inw(h) = inw(f). By the choice of a1, . . . , as, the coefficients of inw(f) cannot not
be invertible. This shows the existence of a weighted independent sequence of length s in
J . Hence dimR/0 : J∞ is less than or equal to the supremum of the length of weighted
independent sequences in J .

Now we will show that s ≤ dimR/0 : J∞ for any weighted independent sequence
a1, . . . , as in J . Let m be a positive number such that 0 : J∞ = 0 : Jm. Then (0 :
J∞)ami = 0, i = 1, . . . , s. This implies (0 : J∞)xmi ⊆ inw(Q). Hence 0 : J∞ ⊆ C, where C
is the ideal of the coefficients of polynomials in inw(Q). Let m be a maximal ideal of R
containing C. Then inw(Q) + (0 : J∞)R[X] ⊆ mR[X]. By Lemma 1.6 there is a surjective
map G/(0 : J∞)G → R[X]/mR[X]. From this it follows that s = dimR[X]/mR[X] ≤
dimG/(0 : J∞)G. We have

G/(0 : J∞)G = ⊕n≥0In/
(
(0 : J∞)In + In+1

)
,

and we will compare this with the ring

G′ := ⊕n≥0
(
In + (0 : I∞)

)
/
(
In+1 + (0 : I∞)

)
,

which is the associated graded ring of R/0 : J∞ with respect to the filtration
(
In +

(0 : J∞)
)
/(0 : J∞), n ≥ 0. Note that dimG′ ≤ dimR/0 : J∞ by Lemma 1.6. Then

s ≤ dimR/0 : J∞ if we can show that dimG/(0 : J∞)G = dimG′.

Let wmax := max{wi| i = 1, . . . , s}. By Equation (1.1) we have In ⊆ Im for n ≥ mwmax.
This implies (0 : J∞)In ⊆ (0 : J∞)Im = 0. Using Artin-Rees lemma we can also show
that (0 : J∞) ∩ In = 0 for n large enough. Thus, there exists a positive number r such
that (0 : J∞)In = (0 : J∞) ∩ In = 0 for n ≥ r. This relation implies

In/
(
(0 : J∞)In + In+1

)
= In/

(
(0 : J∞) ∩ In + In+1

) ∼= (In + (0 : J∞)
)
/
(
In+1 + (0 : J∞)

)
.

Hence ⊕
n≥0

Inr/
(
(0 : J∞)Inr + Inr+1

) ∼= ⊕
n≥0

(
Inr + (0 : J∞)

)
/
(
Inr+1 + (0 : J∞)

)
.

The graded rings on both sides are Veronese subrings of G/(0 : J∞)G and G′, respectively.
Since the dimension of a Veronese subring is the same as of the original ring, we get
dimG/(0 : J∞)G = dimG′, as required. �

Theorem 1.9 has the following immediate consequence.

Corollary 1.10. Let R be a local ring and J an ideal of R. Then dimR/0 : J∞ is the
maximum number of analytically independent elements in J .

This result seems to be new though there was a general (but complicated) formula
for the maximum number of a-independent elements in J , where a is an ideal containing
J (see [1], [17]). Recall that the elements a1, . . . , as are called a-independent if every
homogeneous form in R[X] vanishing at a1, . . . , as has all its coefficients in a. This notion
was introduced by Valla [18].
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2. Independent sequences with respect to a monomial order

In this section we will show how to approximate a monomial order by a weighted degree
and we will prove that the Krull dimension is the supremum of the length of independent
sequences with respect to an arbitrary monomial order.

Let a1, . . . , as be elements of a Noetherian ring R. Recall that a1, . . . , as is a dependent
sequence with respect to a monomial order ≺ if there exists f ∈ R[x1, ..., xs] vanishing at
a1, . . . , as such that the coefficient of in≺(f) is invertible. Otherwise, a1, . . . , as is called
an independent sequence with respect to ≺.

The following example suggests that dependence with respect to a monomial order is
more subtle than weighted dependence.

Example 2.1. Let R = Z and let ≺ be the lexicographic order with x1 � x2. Clearly the
single elements that are dependent with respect to ≺ are 0 and the invertible elements.
We claim that a sequence of two arbitrary integers a, b is always dependent with respect
to ≺. The relation ab = ca2 + db2 found in Example 1.1 does not show the dependence,
so we have to argue in a different way. We may assume a and b to be nonzero and write

a = ±
r∏

i=1

pdii and b = ±
r∏

i=1

peii ,

where the pi are pairwise distinct prime numbers and di, ei ∈ N0. Choose n ∈ N0 such
that n ≥ di/ei for all i with ei > 0. Then

gcd(a, bn+1) =
r∏

i=1

p
min{di,(n+1)ei}
i divides

r∏
i=1

pneii = bn,

so there exist c, d ∈ Z such that bn = ca+dbn+1. Since the least term of f = xn2−cx1−dx
n+1
2

is xn2 this relation shows that a, b are dependent, as claimed.

The argument can easily be adapted to any Dedekind domain.

It is easy to see that the notion of independent sequence depends on the order of the
elements. For instance, the sequence uv, v of Example 1.2 is independent with respect to
the lexicographic order, while v, uv is not by using the same arguments.

Set R[X] = R[x1, . . . , xs] and Q = (x1 − a1, . . . , xs − as), the ideal of all polynomials of
R[X] vanishing at a1, . . . , as. Let in≺(Q) denote the ideal generated by the terms in≺(f),
f ∈ Q. One may ask whether there exists a weight sequence w such that inw(Q) = in≺(Q).
For this will imply that a1, . . . , as is an independent sequence with respect to ≺ if and
only if it is a weighted independent sequence with respect to w.

To study this problem we need the following result in Gröbner basis theory.

Lemma 2.2 (see Eisenbud [9, Exercise 15.12], [11, Exercise 9.2(b)]). Let M be a finite
set of polynomials. Then there exists a weight sequence w such that in≺(f) = inw(f) for
all f ∈M.

We call ≺ a Noetherian monomial order if for every monomial f ∈ R[X] there are only
finitely many monomials g ∈ R[X] with g ≺ f . This class of monomial orders is rather
large. For instance, every monomial order that first compares the (weighted) degree of the
monomials is Noetherian.

Proposition 2.3. For every ideal = of R[X], there exists a weight sequence w such that
in≺(=) ⊆ inw(=). If ≺ is Noetherian, w can be chosen such that in≺(=) = inw(=).
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Proof. Choose g1, . . . , gr ∈ = such that in≺(=) =
(

in≺(g1), . . . , in≺(gr)
)
. From Lemma 2.2

it follows that there exists a weight sequence w such that in≺(gi) = inw(gi) for all i =
1, . . . , r. This implies the first assertion:

in≺(=) =
(

inw(g1), . . . , inw(gr)
)
⊆ inw(=).

Now we will assume that ≺ is Noetherian and prove equality. By way of contradiction,
assume that there exists a polynomial f ∈ = such that inw(f) 6∈ in≺(=). Choose f such
that inw(f) has the least possible number of terms. For every g ∈ R[X] we have in≺(g) �
in≺(inw(g)), so in≺(inw(f)) is an upper bound for all initial terms of polynomials g with
inw(g) = inw(f). By the assumption on the monomial order, we can therefore choose f
such that for all g ∈ =,

(2.1) inw(g) = inw(f) implies in≺(g) � in≺(f).

Since in≺(f) ∈ in≺(=), we have in≺(f) = h1 in≺(g1)+· · ·+hr in≺(gr) for some polynomials
h1, . . . , hr. By deleting some terms of the hi, we may assume that either hi = 0 or hi
is a term such that hi in≺(gi) and in≺(f) are R-multiples of the same monomial. Set
h = h1g1 + · · ·+ hrgr ∈ =. Then

(2.2) in≺(f) = in≺(h) = inw(h),

where the second equality follows from in≺(gi) = inw(gi). For g := f − h ∈ =, this
implies in≺(g) � in≺(f), so inw(g) 6= inw(f) by (2.1). We also have inw(h) 6= inw(f)
because otherwise inw(f) = in≺(f) ∈ in≺(I) by (2.2). For the weighted degrees we have
the inequality

deg (inw(f)) ≤ deg (in≺(f)) = deg (inw(h)) .

In combination with inw(g) 6= inw(f) 6= inw(h), this implies that inw(f), inw(h), and
inw(g) all have the same degree. So inw(g) = inw(f)−inw(h). By (2.2), subtracting inw(h)
from inw(f) removes the initial term of inw(f) but leaves all other terms unchanged. So
inw(g) has fewer terms than inw(f), and because of the choice of f we conclude inw(g) ∈
in≺(=). But since inw(h) ∈ in≺(=) by (2.2), this implies inw(f) ∈ in≺(=), a contradiction.

�

We do not know whether the Noetherian hypothesis is really necessary for the second
assertion of Proposition 2.3.

Remark. For a polynomial f ∈ R[X], we can also consider the leading term LT≺(f) and
the weighted homogeneous part of highest degree, i.e., the leading form LFw(f). This
defines LT≺(=) and LFw(=) for an ideal = ⊆ R[X]. Then Proposition 2.3 remains correct
without the Noetherian hypothesis if we substitute in≺ by LT≺ and inw by LFw. This is
a well known result in Gröbner basis theory (see Eisenbud [9, Proposition 15.16] or [11,
Exercise 9.2(c)]).

Proposition 2.3 implies the following relationship between weighted independent se-
quences and independent sequences with respect to monomial orders.

Corollary 2.4. Let a1, . . . , as be a sequence of elements in R.

(a) If the sequence is weighted independent with respect to every weight sequence, it is
independent with respect to every monomial order.

(b) If the sequence is weighted dependent with respect to every weight sequence, it is
dependent with respect to every Noetherian monomial order.
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Proof. By Proposition 2.3 there exists a weight sequence w such that in≺(Q) ⊆ inw(Q),
with equality if ≺ is Noetherian. Under the hypothesis of (a) there exists a maximal ideal
m ⊂ R such that inw(Q) ⊆ mR[X], so in≺(Q) ⊆ mR[X]. This shows that the sequence is
independent with respect to ≺.

Under the hypothesis of (b), the ideal C of coefficients of polynomials in inw(Q) is R.
Since inw(Q) = in≺(Q), this implies that the sequence is dependent with respect to ≺. �

We will get rid of the Noetherian hypothesis on a monomial order by showing that an
independent sequence with respect to an arbitrary monomial order can be converted to an
independent sequence of the same length with respect to a Noetherian monomial order.
To do that we shall need Robbiano’s characterization of monomial orders.

Lemma 2.5 ([15]). For every monomial order ≺ in s variables, there exists a real matrix

M having s rows such that xm1
1 · · ·xms

s ≺ x
m′1
1 · · ·x

m′s
s if and only if

(m1, . . . ,ms) ·M <lex (m′1, . . . ,m
′
s) ·M,

where <lex is the lexicographic order. Moreover, the first column of M is nonzero and all
its entries are nonnegative.

Proposition 2.6. Let a1, . . . , as ∈ R be an independent sequence with respect to an arbi-
trary monomial order ≺. Then there exists an index i such that the sequence a1ai, . . . , asai
is independent with respect to some Noetherian monomial order ≺′.

Proof. By Lemma 2.5, there exists a real vector (v1, . . . , vs) having nonnegative com-

ponents with some vi > 0 such that xm1
1 · · ·xms

s ≺ x
m′1
1 · · ·x

m′s
s implies

∑s
j=1mjvj ≤∑s

j=1m
′
jvj . Define ≺′ by the rule:

xm1
1 · · ·x

ms
s ≺′ xm

′
1

1 · · ·x
m′s
s if (x1xi)

m1 · · · (xsxi)ms ≺ (x1xi)
m′1 · · · (xsxi)m

′
s .

It is easy to see that ≺′ is a monomial order. If xm1
1 · · ·xms

s ≺′ x
m′1
1 · · ·x

m′s
s , then∑s

j=1mj(vi + vj) ≤
∑s

i=1m
′
j(vi + vj). Since vi + vj > 0 for all j = 1, . . . , s, ≺′ is

Noetherian.

Let f be a polynomial inR[X] such that f(a1ai, . . . , asai) = 0. Put g = f(x1xi, . . . , xsxi).
Then in≺(g) has the same coefficient as in≺′(f). Since g(a1, . . . , as) = 0, the coefficient of
in≺(g) is not invertible. This shows that the coefficient of in≺′(f) is not invertible. �

Now we are ready to extend Lombardi’s characterization of the Krull dimension to an
arbitrary monomial order.

Theorem 2.7. Let R be a Noetherian ring and s a positive integer.

(a) If s ≤ dimR, there exists a sequence a1, . . . , as ∈ R that is independent with respect
to every monomial order.

(b) If s > dimR, every sequence a1, . . . , as ∈ R is dependent with respect to every
monomial order.

Proof. If s ≤ dimR, there exists a sequence a1, . . . , as ∈ R which is weighted independent
with respect to every weight sequence by Theorem 1.8(a). By Corollary 2.4(a), this implies
that a1, . . . , as is independent with respect to every monomial order.

If s > dimR, every sequence a1, . . . , as ∈ R is weighted dependent with respect to every
weight sequence by Theorem 1.8(b). If a1, . . . , as is independent for some monomial order,
then a1ai, . . . , asai is independent with respect to some Noetherian monomial order for
some i by Proposition 2.6. By Corollary 2.4(b), a1ai, . . . , asai is weighted independent
with respect to some weight sequence, a contradiction. �
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As a consequence, dimR is the supremum of the length of independent sequences with
respect to an arbitrary monomial order. In the following we show how this result can be
used to prove the existence of certain relations which look like polynomial identities in R.

Let ≺ be an arbitrary monomial order. For every term g of R[X] there is a unique set
M(g) of monomials h � g such that

(i) every monomial u � g is divisible by a monomial of M(g),
(ii) the monomials of M(g) are not divisible by each other.

For every polynomial f ∈ R[X] vanishing at a1, . . . , as, we can always find a polynomial
vanishing at a1, . . . , as of the form

g +
∑

h∈M(g)

chh

where g = in≺(f) and ch ∈ R. To see this, one only needs to write every term u � g
of f in the form u = vh for some h ∈ M(g) and replace u by the term v(a1, . . . , as)h.
Therefore, a1, . . . , as is a dependent sequence with respect to ≺ if and only if there exists
a polynomial of the above form vanishing at a1, . . . , as such that the coefficient of g is 1.
Since the monomials of M(g) can be written down in a canonical way from the exponent
vector of g, this polynomial yields an algebraic relation between elements of R which are
similar to a polynomial identity.

Example 2.8. Let ≺ be the lexicographic order. For a monomial g = xm1
1 · · ·xms

s ,M(g) is

the set of the monomials xm1+1
1 , xm1

1 xm2+1
2 , . . . , xm1

1 · · ·x
ms−1

s−1 xms+1
s . Therefore, a1, . . . , as

is a dependent sequence with respect to the lexicographic order if and only if there exists
a relation of the form

am1
1 · · · a

ms
s + c1a

m1+1
1 + c2a

m1
1 am2+1

2 + · · ·+ csa
m1
1 · · · a

ms−1

s−1 ams+1
s = 0,

where c1, . . . , cs ∈ R. This explains why Theorem 2.7 is a generalization of Lombardi’s
result in [13]. In that paper Lombardi calls a1, . . . , as a pseudo-regular sequence if

am1
1 · · · a

ms
s + c1a

m1+1
1 am2

2 · · · a
ms
s + · · ·+ csa

m1
1 · · · a

ms−1

s−1 ams+1
s 6= 0

for all nonnegative integers m1, . . . ,ms and c1, . . . , cs ∈ R. By the above observation,
a1, . . . , as is pseudo-regular if and only if it is independent with respect to the lexicographic
order.

Similarly as for weighted independent sequences, one may ask whether dimR/0 : J∞

is the supremum of the length of independent sequences in an ideal J ⊆ R with respect
to an arbitrary monomial order. Unlike the case of weighted independent sequences, we
could not give a full answer to this question. This shows again that independence with
respect to a monomial order is more subtle than weighted independence.

Proposition 2.9. Let J be an arbitrary ideal of R. The length of independent sequences
in J with respect to an arbitrary monomial order is bounded above by dimR/0 : J∞.

Proof. Let a1, . . . , as be an independent sequence in J with respect to an arbitrary mono-
mial order ≺. By Lemma 2.6, a1ai, . . . , asai is an independent sequence with respect to
some Noetherian monomial order for some i. By Corollary 2.4, a1ai, . . . , asai is weighted
independent for some weight sequence. Since a1ai, . . . , asai ∈ J , s ≤ dimR/0 : J∞ by
Theorem 1.9. �
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3. Generalization to monomial preorders

In the previous sections we have considered weight sequences and monomial orders,
and shown analogous results in both cases. So one may ask whether there is a common
generalization of these results. We shall see that the following notion provides the platform
for such a generalization.

Recall that a strict weak order is a binary relation ≺ on a set M such that for f, g, h ∈M
with f ≺ g we have:

(i) f ≺ h or h ≺ g, and
(ii) g 6≺ f (i.e., g ≺ f does not hold).

This is equivalent to say that ≺ is a strict partial order in which the incomparability
relation (given by f 6≺ g and g 6≺ f) is an equivalence relation and the equivalence classes
of incomparable elements are totally ordered.

We call a strict weak order ≺ on the set of monomials of the variables x1, x2, . . . a
monomial preorder if it satisfies the following conditions:

(iii) 1 ≺ f for all monomials f 6= 1, and
(iv) for all monomials f, g, h the equivalence

f ≺ g ⇐⇒ fh ≺ gh

holds.

Notice that the actual preorder - is given by f - g ⇔ g 6≺ f , not by f ≺ g. This slight
inaccuracy in terminology follows common practice in Gröbner basis theory.

Obviously, every monomial order is a monomial preorder. A weight sequence w =
w1, w2, . . . gives rise to a preorder ≺w by comparing their weighted degree, i.e.∏

i

xmi
i ≺w

∏
i

x
m′i
i if

∑
i

miwi <
∑
i

m′iwi.

We call this the w-weighted preorder. The following example shows that monomial pre-
orders are much more general than monomial orders and weighted preorders.

Example 3.1. Let M be a real matrix of s rows such that the first column is nonzero
with nonnegative entries and every row is nonzero with the first nonzero entry positive.
Then M defines a monomial preorder in a polynomial ring of s variables by

f ≺ g if exp(f) ·M <lex exp(g) ·M,

where f, g are monomials, exp(f) and exp(g) denote the exponent vectors of f, g, and <lex

is the lexicographic order. Note that the assumption on the rows of M is equivalent to
(iii). Then every monomial order arises in such a way by Lemma 2.5. If M has only one
column and if its entries are positive integers, then we get a weighted preorder.

Lemma 3.2. Every monomial preorder ≺ can be refined to a monomial order ≺∗, i.e.
f ≺ g implies f ≺∗ g.

Proof. We choose an arbitrary monomial ordering ≺′ and use it to break ties in the equiv-
alence classes of incomparable elements. More precisely, we define f ≺∗ g if f ≺ g or if f, g
is incomparable and f ≺′ g. It is straightforward to check that ≺∗ is a monomial order
and refines ≺. �

A monomial preorder can be approximated by a weighted preorder by the following
lemma, which is well-known in the case of monomial orders (Lemma 2.2).
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Lemma 3.3. Let ≺ be a monomial preorder and letM be a finite set of monomials. Then
there exists a weight sequence w such that the restrictions of ≺ and ≺w to M coincide.

Proof. Assume that M is a set of monomials in s variables x1, . . . , xs. We consider the
“positive cone”

P := {exp(f)− exp(g) | f, g are monomials such that g ≺ f} ⊆ Zs

and the “nullcone”

N := {exp(f)− exp(g) | f, g are incomparable monomials} ⊆ Zs.

We also consider the sets

P+ :=

{
n∑

i=1

αiui
∣∣ n ∈ N>0, ui ∈ P, αi ∈ R>0

}
⊆ Rs

and

N ∗ :=

{
n∑

i=1

αivi
∣∣ n ∈ N>0, vi ∈ N , αi ∈ R

}
⊆ Rs.

Assume that P+ ∩ N ∗ 6= ∅. Then there exist vectors u1, . . . , un ∈ P and v1, . . . , vm ∈ N
and real numbers α1, . . . , αn ∈ R>0 and β1, . . . , βm ∈ R such that

(3.1)
n∑

i=1

αiui −
m∑
j=1

βjvj = 0.

So (α1, . . . , αn, β1, . . . , βm) ∈ Rn+m is a solution of a system of linear equations with
coefficients in Z that satisfies the additional positivity conditions αi > 0. The existence
of a solution in Rn+m satisfying the positivity conditions implies that there also exists a
solution in Qn+m satisfying these conditions. So we may assume αi ∈ Q>0 and βi ∈ Q,
and then, by multiplying by a common denominator, αi ∈ N>0 and βi ∈ Z. It follows
from the definition of a monomial preorder that P is closed under addition and that N
is closed under addition and subtraction. Therefore,

∑n
i=1 αiui ∈ P and

∑m
j=1 βjvj ∈ N .

Hence (3.1) implies P ∩ N 6= ∅. So there exist monomials g ≺ f and incomparable
monomials h, k such that

exp(f)− exp(g) = exp(h)− exp(k).

This implies fk = gh. By condition (iv) of the definition of a monomial preorder, gh
and gk are incomparable, hence so are fk, gk. This implies that f, g are incomparable, a
contradiction. Thus, we must have P+ ∩N ∗ = ∅.

Now we form the finite set

T := {exp(f)− exp(g) | f, g ∈M, g ≺ f} ∪ {e1, . . . , es},

where e1, . . . , es ∈ Rs are the standard basis vectors. Then T ⊆ P since 1 ≺ xi for all i.
We write T = {u1, . . . , un} and form the convex hull

H :=

{
n∑

i=1

αiui
∣∣ αi ∈ R≥0,

n∑
i=1

αi = 1

}
⊆ P+.

Since H is a compact subset of Rs and N ∗ is a linear subspace, there exist u ∈ H and
v ∈ N ∗ such that the Euclidean distance between u and v is minimal.

Set w := u− v. Then

(3.2) w ∈ (N ∗)⊥
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(the orthogonal complement), since otherwise there would be points in N ∗ that are closer
to u than v. Set d := 〈w,w〉, where 〈·, ·〉 denotes the standard scalar product. From
P+ ∩ N ∗ = ∅ we conclude that d > 0. Moreover, (3.2) implies 〈w, u〉 = 〈w, u − v〉 = d.
Take u′ ∈ H arbitrary. Then for every α ∈ R with 0 ≤ α ≤ 1 the linear combination
u+ α(u′ − u) also lies in H, so

d ≤ 〈u+ α(u′ − u)− v, u+ α(u′ − u)− v〉 = 〈w + α(u′ − u), w + α(u′ − u)〉
= d+ 2α

(
〈w, u′〉 − d

)
+ α2〈u′ − u, u′ − u〉.

Since this holds for arbitrarily small α, we conclude 〈w, u′〉 ≥ d > 0. In particular,

(3.3) 〈w, ui〉 > 0 for i = 1, . . . , n.

Since N ∗ has a basis in Zs, the existence of a vector w ∈ Rs satisfying (3.2) and (3.3)
implies that there also exists such a vector in Qs, and then even in Zs. So we may assume
w ∈ Zs and retain (3.2) and (3.3). Since the standard basis vectors ej occur among the
ui, (3.3) implies that w has positive components.

Let w = w1, w2, . . . be a weight sequence starting with w1, . . . , ws chosen above. Let f, g
be two arbitrary monomials of M. Then f ≺w g if and only if 〈w, exp(f)〉 < 〈w, exp(g)〉.
If f and g are incomparable with respect to ≺, then exp(f) − exp(g) ∈ N ∗, hence
〈w, exp(f)〉 = 〈w, exp(g)〉 by (3.2). This implies that f and g are incomparable with
respect to ≺w. If f ≺ g, then exp(g) − exp(f) ∈ T , hence 〈w, exp(g) − exp(f)〉 > 0
by (3.3). This implies that f ≺w g. So we can conclude that ≺ and ≺w coincide on
M. �

Remark. It is clear that any binary relation on the set of monomials satisfying the assertion
of Lemma 3.3 is a monomial preorder. Since the lemma is crucial for obtaining the results
of this section, this shows that we are working in just the right generality.

Let R be a Noetherian ring and R[X] := R[x1, . . . , xs]. Let ≺ be a monomial preorder.
For a polynomial f ∈ R[X] we define in≺(f) to be the sum of all terms of f that are
associated with the minimal monomials appearing in f . As in the previous sections, we
call a sequence a1, . . . , as ∈ R dependent with respect to ≺ if there exists a polynomial
f ∈ R[X] vanishing at a1, . . . , as such that in≺(f) has at least one invertible coefficient.
Otherwise, the sequence is called independent with respect to ≺. These notions cover
both weighted (in-)dependent sequences and (in-)dependent sequences with respect to a
monomial order.

The following result allows us to reduce the study of these notions to weighted inde-
pendent sequences and dependent sequences with respect to a monomial order.

Proposition 3.4. Let a1, . . . , as ∈ R be a sequence of elements.

(a) The sequence is independent with respect to every monomial preorder if it is weighted
independent with respect to every weight sequence.

(b) The sequence is dependent with respect to every monomial preorder if it is dependent
with respect to every monomial order.

Proof. (a) Assume that a1, . . . , as is weighted independent with respect to every weight
sequence. If a1, . . . , as is dependent with respect to some monomial preorder ≺, there is a
polynomial f ∈ R[X] vanishing at a1, . . . , as such that in≺(f) has an invertible coefficient.
By Lemma 3.3 there exists a weight sequence w such that in≺(f) = inw(f). So a1, . . . , as
is weighted dependent with respect to w, a contradiction.

(b) Assume that a1, . . . , as is dependent with respect to every monomial order. If
a1, . . . , as is independent with respect to some monomial preorder ≺, we use Lemma 3.2
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to find a monomial order ≺∗ that refines ≺. If f ∈ R[X] is a polynomial vanishing at
a1, . . . , as, then in≺(f) has no invertible coefficient. Since the least term in≺∗(f) of f is
minimal with respect to ≺∗, is is also minimal with respect to ≺, so it is a term of in≺(f).
Therefore the coefficient of in≺∗(f) is not invertible. But this means that the sequence is
independent with respect to ≺∗, a contradiction. �

Combining Proposition 3.4 with Theorems 1.8(a) and 2.7(b), we obtain the following
generalization of the main results of the two previous sections.

Theorem 3.5. Let R be a Noetherian ring and s a positive integer.

(a) If s ≤ dimR, there exists a sequence a1, . . . , as ∈ R that is independent with respect
to every monomial preorder.

(b) If s > dimR, every sequence a1, . . . , as ∈ R is dependent with respect to every
monomial preorder.

As a consequence, dimR is the supremum of the length of independent sequences with
respect to an arbitrary monomial preorder.

4. Algebras over a Jacobson ring

In this section we extend our investigation to algebras over a ring. Our aim is to
generalize the characterization of the Krull dimension of algebras over a field by means of
the transcendence degree.

Let A be an algebra over a ring R. Given a monomial preorder ≺, we say that a
sequence a1, . . . , as of elements of A is dependent over R with respect to ≺ if there exists a
polynomial f ∈ R[X] := R[x1, . . . , xs] vanishing at a1, . . . , as such that in≺(f) has at least
one coefficient that is invertible in R. Otherwise, the sequence is called independent over
R with respect to ≺. Note that if R is a field, these are just the usual notions of algebraic
dependence and independence, and they do not depend on the choice of the monomial
preorder. In this case, it is well known that dimA is equal to the transcendence degree of
A over R. So we may ask whether dimA is equal to the maximal length of independent
sequences over R with respect to ≺.

The following example shows that this question has a negative answer in general.

Example 4.1. Let R be an one-dimensional local domain. Let A = R[a−1], where a 6= 0
is an element in the maximal ideal of R. Then dimA = 0, whereas a is an independent
element over R with respect to every monomial preorder. (In fact, there exists only one
monomial preorder in just one variable.)

We shall see that the above question has a positive answer if R is a Noetherian Jacobson
ring. Recall that R is called a Jacobson ring (or Hilbert ring) if every prime of R is the
intersection of maximal ideals. It is well known that every finitely generated algebra over
a field is a Jacobson ring (see Eisenbud [9, Theorem 4.19]). More examples are given by
tensor products of extensions of a field with finite transcendence degree [16].

Clearly, R is a Jacobson ring if and only if every nonmaximal prime P of R is the
intersection of primes P ′ ⊃ P with ht(P ′/P ) = 1. Therefore, the following lemma will be
useful in studying Jacobson rings. This lemma seems to be folklore. Since we could not
find any references in the literature, we provide a proof for the convenience of the reader.

Lemma 4.2. Let R be a Noetherian ring and P a nonmaximal prime of R.

(a) For every prime Q ⊃ P with ht(Q/P ) ≥ 2, there exist infinitely many primes P ′

with P ⊆ P ′ ⊆ Q and ht(P ′/P ) = 1 in Q.
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(b) If M is a set of primes P ′ ⊃ P with ht(P ′/P ) = 1, then P = ∩P ′∈MP ′ if and only
if M is infinite.

Proof. (a) By factoring out P and localizing at Q we may assume that P is the zero ideal
of a local domain R with maximal ideal Q. We have to show that the set of height one
primes of R is infinite. By Krull’s principal theorem, every element a 6= 0 in Q is contained
in some height one prime P ′. So Q is contained in the union of all height one primes of R.
If the number of these primes were finite, it would follow by the prime avoidance lemma
that Q is contained in one of them, contradicting the hypothesis ht(Q) ≥ 2.

(b) Let I = ∩P ′∈MP ′. If P 6= I, every prime P ′ of M is a minimal prime over I.
Hence M is finite because R is Noetherian. Conversely, if M is finite, then M is the set
of minimal primes over I. This implies ht(P ) < ht(I), hence P 6= I. �

Corollary 4.3. A Noetherian ring R is a Jacobson ring if and only if for every prime P
with dimR/P = 1 there exist infinitely many maximal ideals containing P .

Proof. By Lemma 4.2, every prime P of a Noetherian ring R with dimR/P ≥ 2 is the
intersection of primes P ′ ⊃ P with ht(P ′/P ) = 1. Therefore, R is a Jacobson ring if
and only if every prime P with dimR/P = 1 is the intersection of maximal primes. By
Lemma 4.2(b), this is equivalent to the condition that there exist infinitely many maximal
ideals containing P . �

We use the above results to prove the following lemma which will play a crucial role in
our investigation on independent sequences over R.

Lemma 4.4. Let a be an element of a Noetherian ring R and set

Ua := {an(1 + ax) | n ∈ N0, x ∈ R} .
Then the localization U−1a R is a Jacobson ring.

Proof. We will use the inclusion-preserving bijection between the primes of S := U−1a R and
the primes P of R satisfying Ua∩P = ∅. Let P be such a prime of R with dim

(
S/U−1a P

)
=

1. Then there exists a prime P1 ⊃ P of R with ht(P1/P ) = 1 and Ua ∩P1 = ∅. The latter
condition implies a /∈ P1 and 1 /∈ (P1, a). Let Q be a prime of R containing (P1, a). Then
ht(Q/P ) ≥ 2. By Lemma 4.2(a), the set

M :=
{
P ′ ∈ Spec(R) | P ⊂ P ′ ⊂ Q, ht(P ′/P ) = 1

}
is infinite. Consider the set N := {P ′ ∈M | Ua ∩P ′ 6= ∅}. If N is infinite, P =

⋂
P ′∈N P

′

by Lemma 4.2(b). Since Ua ∩ P = ∅, a 6∈ P . Therefore, there exists a prime P ′ ∈ N
such that a 6∈ P ′. Since Ua ∩ P ′ 6= ∅, this implies 1 + ax ∈ P ′ for some x ∈ R. Hence
1 ∈ (P ′, a) ⊆ Q, a contradiction. So N must be finite, and we can conclude that M\N
is infinite. By the definition of M and N , the set of primes P ′ ⊃ P with ht(P ′/P ) = 1
and Ua ∩ P ′ = ∅ is infinite. Since this set corresponds to the set of maximal ideals of S
containing U−1a P , the assertion follows from Corollary 4.3. �

Remark. The localization U−1a R from Lemma 4.4 was already used by Coquand and Lom-
bardi to give a short proof for the fact that the Krull dimension of a polynomial ring over
a field is equal to the number of variables [5]. They called it the boundary of a in R.

Now we are going to give a characterization of the Krull dimension of algebras over a
Jacobson ring R by means of independent elements over R with respect to an arbitrary
monomial preorder ≺. First we need to consider the case where ≺ is the lexicographic
order with xi > xi+1 for all i.
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We call an R-algebra subfinite if it is a subalgebra of a finitely generated R-algebra. A
subfinite algebra needs not to be finitely generated.

Theorem 4.5. Let A be a subfinite algebra over a Noetherian Jacobson ring R and let s
be a positive integer. There exists a sequence a1, . . . , as ∈ A that is independent over R
with respect to the lexicographic order if and only if s ≤ dimA.

Proof. If s ≤ dimA, Lombardi [13] (which does require A to be Noetherian) tells us
that there exists a sequence of length s that is independent over A with respect to the
lexicographic order. Therefore it is also independent over R.

The next step is to prove the converse under the hypothesis that A is finitely generated.
We use induction on s. We may assume that A 6= {0}, dimA < ∞, and s = dimA + 1.
We have to show that every sequence a1, . . . , as ∈ A is dependent over R with respect to
the lexicographic order.

Let T be the set of univariate polynomials f ∈ R[x] whose initial term in(f) has
coefficient 1. Since T is multiplicatively closed, so is the set

U := {f(as) | f ∈ T} ⊆ A.

Let A′ := U−1A. If dimA′ = s − 1, then A has a height s − 1 prime P with U ∩ P = ∅.
This prime must be maximal because dimA = s− 1. Since R is a Jacobson ring, A/P is
a finite field extension of R/(R ∩ P ) [9, Theorem 4.19]. Since U ∩ P = ∅, as 6∈ P . These
facts imply that there exists g ∈ R[x] such that asg(as) − 1 ∈ P . But 1 − xg ∈ T , so
1− asg(as) ∈ U ∩ P , a contradiction. So we can conclude that dimA′ < s− 1.

If A′ = {0} (which must happen if s = 1), then 0 ∈ U , hence there exists f ∈ T with
f(as) = 0. So the sequence a1, . . . , as is dependent over R with respect to the lexicographic
order. Having dealt with this case, we may assume A′ 6= {0}. Let R′ := U−1R[as]. Then
A′ is finitely generated as an R′-algebra. By Lemma 4.4, R′ is a Jacobson ring. So we
may apply the induction hypothesis to A′. This tells us that the sequence a1, . . . , as−1 (as
elements of A′) is dependent over R′ with respect to the lexicographic order. Thus, there
exists a polynomial g ∈ R′[x1, . . . , xs−1] vanishing at a1, . . . , as−1 such that the coefficient
of inlex(g) is invertible in R′. We may assume that this coefficient is 1. By the definition
of A′ there exists c0 ∈ R such that c0g ∈ R[as][x1, . . . , xs−1] and (c0g)(a1, . . . , as−1) = 0
(as an element of A). Replacing every coefficient c ∈ R[as] of the polynomial c0g by a
polynomial c∗ ∈ R[xs] with c∗(as) = c, we obtain a polynomial g∗ ∈ R[x1, . . . , xs] vanishing
at a1, . . . , as. Since c0 ∈ U , we may choose c∗0 ∈ T . Clearly, the coefficient of inlex(g∗) is
equal to the coefficient of in(c∗0), which is 1. This shows that a1, . . . , as are dependent over
R with respect to the lexicographic order.

Now we deal with the case A is a subalgebra of a finitely generated R-algebra B.
Let P1, . . . , Pn ∈ Spec(B) be the minimal primes of B, and assume that we can show
that for every i, the images of a1, . . . , as in A/(A ∩ Pi) are dependent over R with
respect to the lexicographic order. Then for every i, there exists a polynomial fi ∈
R[x1, . . . , xs] with fi(a1, . . . , as) ∈ Pi such that the coefficient of inlex(fi) is invertible.
Since

∏n
i=1 fi(a1, . . . , as) lies in the nilradical of B, there exists k such the polynomial

f :=
∏n

i=1 f
k
i vanishes at a1, . . . , as. Since the coefficient of inlex(f) is also invertible, this

shows that a1, . . . , as are dependent over R with respect to the lexicographic order. So
we may assume that B is an integral domain. By Giral [10, Proposition 2.1(b)] (or [11,
Exercise 10.3]), there exists a nonzero a ∈ A such that A[a−1] is a finitely generated R-
algebra. Since dimA[a−1] ≤ dimA < s, the sequence a1, . . . , as is dependent over R with
respect to the lexicographic order. This completes the proof. �

17



One can use Theorem 4.5 to prove the existence of nontrivial relations between algebraic
numbers (i.e., elements of an algebraic closure of Q).

Example 4.6. Let a and b be two nonzero algebraic numbers. There exists d ∈ Z \ {0}
such that a and b are integral over Z[d−1]. So A := Z

[
a, b, d−1

]
has Krull dimension 1. By

Theorem 4.5, there is a polynomial f ∈ Z[x1, x2] vanishing at a, b such that the coefficient
of inlex(f) is 1. Let inlex(f) = xm1 x

n
2 . Then all monomials of f are divisible by xm1 . Hence

we may assume m = 0. Thus,

bn = a · g(a, b) + bn+1 · h(a, b)

for some g, h ∈ Z[x1, x2]. It is not clear how the existence of such a relation follows
directly from properties of algebraic numbers. In the case that Z[a, b] is a Dedekind ring,
we derived such a relation in Example 2.1.

To the best of our knowledge, the following immediate consequence of Theorem 4.5 is
new even for finitely generated algebras.

Corollary 4.7. Let R be a Noetherian Jacobson ring. If A ⊂ B are subfinite R-algebras,
then

dimA ≤ dimB.

Now we turn to arbitrary monomial preorders and prove the main result of this section.
The proof relies on Corollary 4.7.

Theorem 4.8. Let A be a subfinite algebra over a Noetherian Jacobson ring R and let s
be a positive integer.

(a) If s ≤ dimA, there exists a sequence a1, . . . , as ∈ A that is independent over R
with respect to every monomial preorder.

(b) If s > dimA, every sequence a1, . . . , as ∈ A is dependent over R with respect to
every monomial preorder.

Proof. (a) Let A be a subalgebra of a finitely generated R-algebra B. Since
√

0A =
√

0B∩A
and since the nilradical is the intersection of all minimal primes, the set of the minimal
primes of A is contained in the set of prime ideals of the form P ∩ A, where P is a
minimal prime ideal of B. Therefore, there exists a minimal prime ideal P of B such that
dimA/P ∩ A = dimA. If a1, ..., as ∈ A is independent over R in A/P ∩ A, then it is also
independent over R in A. Therefore, we may replace A by A/P ∩A and assume that B is
an integral domain. By Giral [10, Proposition 2.1(b)] (or [11, Exercise 10.3]), there exists
a nonzero a ∈ A such that A[a−1] is a finitely generated R-algebra. Then dimA[a−1] ≤
dimA. By Corollary 4.7, dimA ≤ dimA[a−1]. Hence s ≤ dimA = dimA[a−1]. Choose
a1, ..., as ∈ A such that (a1, ..., as)A[a−1] has a minimal prime ideal of height s. Then
a1, ..., as is independent over R with respect to every monomial preorder by Proposition 1.7
and Theorem 3.4(a).

(b) Let A′ := R[a1, . . . , as] ⊆ A. By Corollary 4.7, dimA′ ≤ dimA. So Theo-
rem 3.5(b) yields for every monomial preorder ≺ a polynomial f ∈ A′[x1, . . . , xs] vanishing
at a1, . . . , as such that in≺(f) has an invertible coefficient c0. We may assume c0 = 1.
Write f =

∑n
i=0 citi with ci ∈ A′ and ti pairwise different monomials such that t0 is min-

imal among the ti. Choose polynomials c∗i ∈ R[x1, . . . , xs] with c∗i (a1, . . . , as) = ci and
c∗0 = 1. Set set f∗ =

∑n
i=0 c

∗
i ti. Then f∗ is a polynomial of R[x1, . . . , xs] vanishing at

a1, . . . , as. From the compatibility of monomial preorders with multiplication we conclude
that t0 is a term of in≺(f∗). This shows that the sequence a1, . . . , as is dependent over R
with respect to ≺. �
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Theorem 4.8 generalizes a result of Giral [10] which says that the dimension of a subfinite
algebra over a field is equal to its transcendence degree.

As a consequence of the above results, we give a characterization of Jacobson rings,
which implies that the hypothesis that R is a Jacobson ring cannot be dropped from
Corollary 4.7 and Theorem 4.8.

Corollary 4.9. For a Noetherian ring R, the following statements are equivalent:

(a) R is a Jacobson ring.
(b) For every subfinite R-algebra A and every monomial preorder, dimA is the supre-

mum of the length of independent sequences over R in A.
(c) If A ⊆ B is a pair of subfinite R-algebras, then dimA ≤ dimB.

Proof. The only implication that requires a proof is that (c) implies (a). But if R is not
a Jacobson ring, then by [9, Lemma 4.20], R has a nonmaximal prime ideal P such that
A := R/P contains a nonzero element b for which B := A[b−1] is a field. So (c) fails to
hold. �
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