Christmas Special

In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

- A1 Give an example of an affine variety that cannot occur as the underlying variety of an algebraic group.
- A2 The group GL_2 acts naturally on the affine space K^2 . Consider the restriction of this action to the subgroup $G = \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \subset GL_2$. What are the orbits of this *G*-action? Describe the partial order (given by the closure relations) on the set of orbits.
- A3 Consider the group \mathbb{G}_m and for any integer $d \ge 0$ the finite subgroup $\mu_d = \{x \in \mathbb{G}_m | x^d = 1\}$. Compute the quotient \mathbb{G}_m/μ_d .
- A4 Compute the Lie algebra $\mathscr{L}(G)$ of the algebraic group $G = SL_n \cap T_n$.
- A5 Let G be an algebraic group such that for each representation $\rho : G \to Aut(V)$ into a finitedimensional vector space V, there exists a line $K \cdot v \subset V$ fixed under G. Show that G is solvable.
- A6 Give an example of a unipotent element in the orthogonal group O_{2014} .
- A7 Show that the orthogonal group O_{2015} is not solvable.
- A8 Let G_1 and G_2 be two nilpotent algebraic groups. Show that $G_1 \times G_2$ is again nilpotent.
- A9 Show that the commutator group (GL_2, GL_2) equals SL_2 .
- A10 Show that the group of characters $X(GL_2)$ is generated by the character which maps each matrix to its determinant.