Solutions to the Christmas Special

A1 Take $Z=V(x y) \subset K^{2}$ the union of the two coordinate axis. It is connected, but not irreducible, hence cannot come from any algebraic group.

A2 The orbits are

$$
\begin{aligned}
& X_{y}=\{(x, y), x \in K\} \quad \text { for } y \in K, y \neq 0 \text { fixed } \\
& Y=\{(x, 0), x \in K \backslash\{0\}\} \quad \text { and } \quad Z=\{(0,0)\}
\end{aligned}
$$

Each X_{y} and the orbit Z is closed, while the closure of Y is $Y \cup Z$.
A3 Let \mathbb{G}_{m} act on $X=\mathbb{G}_{m}$ via $(g, x)=g^{d} \cdot x$. Then the stabilizer of $1 \in X$ equals μ_{d} and the orbit of $1 \in X$ is all of X. Hence $\mathbb{G}_{m} / \mu_{d} \cong X=\mathbb{G}_{m}$.

A4 We have $\mathscr{L}\left(S L_{n}\right)=\left\{X \in M_{n} \mid \operatorname{tr}(X)=0\right\}$ and $\mathscr{L}\left(T_{n}\right)=\left\{X=\left(x_{i j}\right) \in M_{n} \mid x_{i j}=0\right.$ for $\left.i<j\right\}$. Thus we have

$$
\mathscr{L}(G)=\mathscr{L}\left(S L_{n} \cap T_{n}\right) \subseteq \mathscr{L}\left(S L_{n}\right) \cap \mathscr{L}\left(T_{n}\right)=\left\{X=\left(x_{i j}\right) \in M_{n} \mid \operatorname{tr}(X)=0 \text { and } x_{i j}=0 \text { for } i<j\right\}
$$

Now $\operatorname{dim} \mathscr{L}(G)=\operatorname{dim} G=\operatorname{dim} T_{n}-1$ which equals the dimension of the Lie algebra on the righthand side. Hence we must have equality.

A5 Choose any faithful representation V of G. Then we may find inductively linearly independent vectors v_{1}, \ldots, v_{n} such that for each i, the line spanned by v_{i} inside $V /\left\langle v_{1}, \ldots, v_{i-1}\right\rangle$ is fixed by G. Then wrt. to such a basis, G is given by upper triangular matrices in $G L(V)$. Hence it is solvable.

A6 The unit element $1 \in O_{2014}$.
A7 Permutation matrices are orthogonal matrices. Hence O_{2015} contains a closed subgroup isomorphic to the symmetric group S_{2015}. But S_{2015} is not solvable (e.g. because it contains the non-solvable group S_{5}) and hence O_{2015} cannot be solvable either.

A8 A direct computation gives $C^{i}\left(G_{1} \times G_{2}\right)=C^{i}\left(G_{1}\right) \times C^{i}\left(G_{2}\right)$ for each i. Thus for nilpotent G_{1} and G_{2}, we may find some $n \gg 0$ such that $C^{n}\left(G_{1}\right)=1$ and $C^{n}\left(G_{2}\right)=1$. Hence we have found some $n \gg 0$ with $C^{n}\left(G_{1} \times G_{2}\right)=1$.

A9 Obviously $\left(G L_{2}, G L_{2}\right) \subset S L_{2}$. To show the converse, compute for any $\lambda, \mu, \mu^{\prime} \in K \backslash\{0\}$:

$$
\begin{aligned}
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) & =\left(\begin{array}{ll}
0 & 1 \\
\lambda & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
\lambda & 0
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)^{-1} \in\left(G L_{2}, G L_{2}\right) \\
\left(\begin{array}{cc}
1 & \mu-\mu^{\prime} \\
0 & 1
\end{array}\right) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\mu^{\prime} & 0 \\
0 & \mu
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
\mu^{\prime} & 0 \\
0 & \mu
\end{array}\right)^{-1} \in\left(G L_{2}, G L_{2}\right) \\
\left(\begin{array}{cc}
1 & 0 \\
\mu-\mu^{\prime} & 1
\end{array}\right) & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\mu & 0 \\
0 & \mu^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
\mu & 0 \\
0 & \mu^{\prime}
\end{array}\right)^{-1} \in\left(G L_{2}, G L_{2}\right)
\end{aligned}
$$

Hence we can decompose

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a^{-1} c & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & a^{-1} b \\
0 & 1
\end{array}\right) \in\left(G L_{2}, G L_{2}\right)
$$

for any matrix in $S L_{2}$ with $a \neq 0$. This shows that $\left(G L_{2}, G L_{2}\right)$ contains an open subset of $S L_{2}$. But $\left(G L_{2}, G L_{2}\right)$ is closed as well. Hence $\left(G L_{2}, G L_{2}\right)=S L_{2}$.

A10 We already saw in one exercise class that any character vanishes on $\left(G L_{2}, G L_{2}\right)=S L_{n}$. Hence $X\left(G L_{n}\right) \subset X\left(G L_{n} / S L_{n}\right) \cong X\left(\mathbb{G}_{m}\right) \cong \mathbb{Z}$. As $X\left(G L_{n}\right)$ is torsion free and non-trivial (because det gives a character), we see $X\left(G L_{2}\right) \cong \mathbb{Z}$. It remains to see that det is indeed a generator of $X\left(G L_{2}\right)$.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \sqrt[n]{a d-b c}
$$

is not given by a polynomial. Contradiction to our assumption that det is no generator.

