Prof. Dr. Gregor Kemper
M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 14.1.2015, during the lecture)
In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.
E 45 (Product decomposition in a unipotent group) Let $\lambda, \mu \in K \backslash\{0\}$ be two distinct elements and define $s=\operatorname{diag}(\lambda, \lambda, \mu) \in D_{3} \subset G L_{3}$.
(a) Compute $\mathrm{C}_{U_{3}}(s)=\left\{g \in U_{3} \mid g s g^{-1}=s\right\}$.
(b) Compute the image of U_{3} under the morphism of varieties $\gamma_{s}: G L_{3} \rightarrow G L_{3}, \gamma_{s}(g)=s g s^{-1} g^{-1}$.
(c) Show that the product morphism $m: \mathrm{C}_{U_{3}}(s) \times \gamma_{s}\left(U_{3}\right) \rightarrow U_{3}, m(g, h)=g \cdot h$ is bijective and compute for each element in U_{3} its preimage.

Remark: This is a special case of theorem 8.4 , which was shown in the lecture.
E 46 (A counterexample) Consider the action of $\mathbb{G}_{a} \cong U_{2}$ on T_{2} given by conjugation $U_{2} \times T_{2} \rightarrow T_{2}$, $(g, x) \mapsto g \cdot x \cdot g^{-1}$.
(a) Show that the morphism $f: T_{2} \rightarrow D_{2},\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \mapsto\left(\begin{array}{cc}a & 0 \\ 0 & c\end{array}\right)$ is surjective and constant on U_{2}-orbits in T_{2}.
(b) Determine the centralizer $\mathrm{C}_{T_{2}}\left(U_{2}\right)$ or equivalently the set of all elements in T_{2}, which are invariant under the U_{2}-action. Conclude that the restricted morphism $f: \mathrm{C}_{T_{2}}\left(U_{2}\right) \rightarrow D_{2}$ is no longer surjective.

Remark: This shows that corollary 18.4 from the lecture may fail if a non-diagonalizable group acts.

E 47 (An example of a Weyl group) Consider the algebraic group $P G L_{n}=G L_{n} / Z\left(G L_{n}\right)$, where $Z\left(G L_{n}\right) \subset$ $G L_{n}$ denotes the center.
(a) Find a torus T in $P G L_{n}$ of dimension $n-1$.
(b) Compute the Weyl group $\mathrm{W}\left(P G L_{n}\right)=\mathrm{N}_{P G L_{n}}(T) / T$, where $\mathrm{N}_{P G L_{n}}(T)$ denotes the normalizer of T in $P G L_{n}$.

E 48 (Maximal tori in an orthogonal group)

(a) Find a 1-dimensional torus in SO_{3}.
(b) Show that any two 1-dimensional tori in SO_{3} are conjugated.

Hint: Prove that for the canonical action of SO_{3} on K^{3}, such a torus will fix some line pointwise.
(c) Prove that there does not exist any 2-dimensional torus in SO_{3}.

Solutions to the exercises will be available from January 15, 2015 on, at

