Prof. Dr. Gregor Kemper M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 21.1.2015, during the lecture)

In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

E 49 (Some semi-direct products)

- (a) Show that the symmetric group S_n is isomorphic to a semi-direct product $A_n \rtimes \mathbb{Z}/2\mathbb{Z}$, where A_n denotes the alternating group.
- (b) Prove that we can write GL_n as a semi-direct product $SL_n \rtimes H$ for some closed subgroup $H \subset GL_n$. Show that for $n \ge 2$, the subgroup H is not uniquely determined.
- (c) Show that the cyclic group $\mathbb{Z}/4\mathbb{Z}$ is not isomorphic to a semi-direct product $\mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.

Remark: Note that part (c) gives an example of a surjective group morphism $f : G \to H$, such that there is no group morphism $g : H \to G$ satisfying $g \circ f = id_H$.

E 50 (Some counterexamples)

- (a) Give an example of a connected algebraic group G and a closed subgroup $H \subset G$ consisting of semi-simple elements, such that H does not lie in any maximal torus of G. *Hint:* Consider non-connected subgroups H.
- (b) Give an example of a connected algebraic group G, a maximal torus $T \subset G$ and a closed subgroup $H \subset T$, such that $C_G(H) \neq N_G(H)$.

Remark: This shows that the solvability of *G* is essential in theorem 9.6.

- **E 51** (Extensions of tori) Let G be an algebraic group and $T \subset G$ a torus, which is normal in G. Assume that G/T is again a closed torus. Prove that G itself is a torus.
- **E 52** (Centralizer of maximal tori) Let *G* be a connected solvable algebraic group and $T \subset G$ a maximal torus. Show that the centralizer $C_G(T)$ is nilpotent.

Solutions to the exercises will be available from January 22, 2015 on, at

https://www-m11.ma.tum.de/lehre/wintersemester-201415/ws1415-linear-algebraic-groups/