Prof. Dr. Gregor Kemper
M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 22.10.2014, during the lecture)
In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.
E 5 (Images of morphisms of affine varieties) Consider the affine variety $X=V(x z-y) \subset K^{3}$ and the morphism

$$
f: X \rightarrow K^{2} \quad, \quad(x, y, z) \mapsto(x, y)
$$

Show that the image of this morphism is not locally closed in K^{2}, i.e. an intersection of an open subset with a closed one. In particular it is neither open nor closed.
Hint: To understand this example better, either draw pictures (over the reals) or view X as a family of affine varieties (how do they look like?) varying along the x-axis.
Remark: Note the completely different behaviour when working with algebraic groups!

E 6 (Finite normal subgroups)

(a) Show in detail that an algebraic group G acts morphically on $X=G$ by conjugation.
(b) Show that any finite normal subgroup of a connected algebraic group G lies in the center of G.
(c) Give examples showing that we cannot omit the assumption "normal" or the assumption "connected" in part b) of this exercise.

E 7 (Subgroups fixed by automorphisms) Let G be an algebraic group and $f: G \rightarrow G$ an automorphism of algebraic groups. Assume that $H \subseteq G$ is a closed subgroup satisfying $f(H) \subseteq H$. Show that $f(H)=H$.
Hint: Consider the dimension of the identity components H^{0} and $f(H)^{0}$.
Remark: This removes the ambiguity in the definition of a normalizer noted on the previous exercise sheet.

E 8 (Normalizers which are not connected) Consider $D_{n} \subset G L_{n}$ the subgroup of all diagonal matrices.
(a) Show that the normalizer $\mathrm{N}_{G L_{n}}\left(D_{n}\right)$ consists exactly of all monomial matrices, i.e. of all elements in $G L_{n}$ that have exactly one non-zero coefficient in each column and each row.
(b) What is the identity component $\mathrm{N}_{G L_{n}}\left(D_{n}\right)^{0}$?

Solutions to the exercises will be available from October 23, 2014 on , at

