Prof. Dr. Gregor Kemper
M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 29.10.2014, during the lecture)
In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

E 9 (Partial order on the set of orbits)

(a) Let G be an algebraic group acting on an affine variety X. On the set of orbits, we define the relation \prec via

$$
G(x) \prec G(y) \quad \text { if } \quad G(x) \subseteq \overline{G(y)}
$$

for any two orbits $G(x)$ and $G(y) \subset X$. Show that \prec defines a partial order on the set of orbits.
(b) Consider now the group $G=\mathbb{G}_{m} \times \mathbb{G}_{m}$ acting on the affine variety $X=K^{2}$ via

$$
G \times X \rightarrow X \quad, \quad((\lambda, \mu),(x, y)) \mapsto\left(\lambda \cdot x, \mu^{2} \cdot y\right) \quad \forall \lambda, \mu \in K^{\times}, x, y \in K
$$

(here we identify $\mathbb{G}_{m} \cong K^{\times}$by mapping $\lambda \in K^{\times}$to $\left(\lambda, \lambda^{-1}\right) \in V(x y-1) \subset K^{2}$). Show that this action has precisely four orbits and describe the partial order \prec explicitly in this example.

E 10 (Conjugation action of $G L_{3}$) Consider the algebraic group $G=G L_{3}$ and the affine variety of all 3×3-matrices $X=K^{3 \times 3}$. Then G acts on X by conjugation $g(x)=g \cdot x \cdot g^{-1}$ for all $g \in G=G L_{3}$ and $x \in X=K^{3 \times 3}$.
(a) Show that the set $Y \subset X$ consisting on all nilpotent matrices is a closed subset of X, which is stable under the G-action.
(b) Determine all G-orbits in Y and describe the partial order \prec (cf. the previous exercise) on them.

E 11 ((Non)-extension of group actions) Give an example of an algebraic group G acting morphically on an affine variety $X \subset K^{n}$ (for some n), such that there exists no action of G on all of K^{n} coinciding with the given action when restricted to X.
Hint: Such examples already exist for finite groups G.

E 12 (The Lie algebra of \mathbb{G}_{m})

(a) Let R be any K-algebra, $S \subset R$ a multiplicative subset and $S^{-1} R$ the localization of R in S. Consider the map

$$
\operatorname{Der}_{K}\left(S^{-1} R, S^{-1} R\right) \rightarrow \operatorname{Der}_{K}\left(R, S^{-1} R\right) \quad, \quad \delta \mapsto \delta \circ i
$$

where $i: R \rightarrow S^{-1} R$ is the canonical morphism. Show that this gives a well-defined bijection between the two sets.
(b) Identifying $K\left[\mathbb{G}_{m}\right]=K\left[x, x^{-1}\right]$, show that $\operatorname{Der}_{K}\left(K\left[\mathbb{G}_{m}\right], K\left[\mathbb{G}_{m}\right]\right)=\left\{\left.p \cdot \frac{d}{d x} \right\rvert\, p \in K\left[x, x^{-1}\right]\right\}$.
(c) Verify that $\operatorname{Lie}\left(\mathbb{G}_{m}\right)=\left\{\left.\lambda x \frac{d}{d x} \right\rvert\, \lambda \in K\right\} \subset \operatorname{Der}_{K}\left(K\left[\mathbb{G}_{m}\right], K\left[\mathbb{G}_{m}\right]\right)$.

Solutions to the exercises will be available from October 30, 2014 on , at

[^0]
[^0]: https://www-m11.ma.tum.de/lehre/wintersemester-201415/ws1415-linear-algebraic-groups/

