Prof. Dr. Gregor Kemper
M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 5.11.2014, during the lecture)
In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.
E 13 (Derivations) Let R be any K-algebra and $\delta_{1}, \delta_{2} \in \operatorname{Der}_{K}(R, R)$ two derivations.
(a) Prove that $\left[\delta_{1}, \delta_{2}\right]=\delta_{1} \circ \delta_{2}-\delta_{2} \circ \delta_{1}$ is again a derivation.
(b) Give an example, such that $\delta_{1} \circ \delta_{2}$ is not a derivation.

Project 1 (Lie algebra of $G L_{n}$)

(a) Show that the space of point derivations can be described as

$$
\operatorname{Der}_{K}\left(K\left[G L_{n}\right], K\right)=\left\{\left.\sum_{i, j} \lambda_{i j} \frac{\partial}{\partial x_{i j}} \right\rvert\, \lambda_{i j} \in K \forall i, j=1, \ldots, n\right\} \cong K^{n \times n} .
$$

Here $\frac{\partial}{\partial x_{i j}}$ maps an element $f \in K\left[G L_{n}\right]$ to $\frac{\partial f}{\partial x_{i j}}(e)$ where we evaluate at the unit element $e \in G L_{n}$.
(b) The multiplication map $m: G L_{n} \times G L_{n} \rightarrow G L_{n}$ defines a homomorphism of coordinate rings

$$
m^{*}: K\left[G L_{n}\right]=K\left[x_{i j}\right]\left[\operatorname{det}\left(x_{i j}\right)^{-1}\right] \rightarrow K\left[G L_{n} \times G L_{n}\right]=K\left[y_{i j}, z_{i j}\right]\left[\operatorname{det}\left(y_{i j}\right)^{-1}, \operatorname{det}\left(z_{i j}\right)^{-1}\right]
$$

where i, j always range between 1 and n and $\operatorname{det}(\ldots)$ denotes the determinant polynomial in the respective variables. What is $m^{*}\left(x_{i j}\right)$ explicitly for each coordinate $x_{i j}$?
(c) If we have two point derivations $\delta_{1}, \delta_{2}: K\left[G L_{n}\right] \rightarrow K$, we set

$$
\delta_{1} \otimes \delta_{2}: K\left[G L_{n} \times G L_{n}\right] \rightarrow K \quad, \quad y_{i j} \mapsto \delta_{1}\left(y_{i j}\right) \text { and } z_{i j} \mapsto \delta_{1}\left(z_{i j}\right)
$$

(recall that we view K as a $K\left[G L_{n} \times G L_{n}\right]$-algebra via evaluation at (e, e) and use this to define $\delta_{1} \otimes \delta_{2}$ on all polynomials). Moreover we define their Lie bracket via

$$
\left[\delta_{1}, \delta_{2}\right]: K\left[G L_{n}\right] \rightarrow K \quad, \quad\left[\delta_{1}, \delta_{2}\right](f)=\left(\boldsymbol{\delta}_{1} \otimes \boldsymbol{\delta}_{2}\right)\left(m^{*}(f)\right)-\left(\boldsymbol{\delta}_{2} \otimes \boldsymbol{\delta}_{1}\right)\left(m^{*}(f)\right)
$$

Prove now that under the identification $\operatorname{Der}_{K}\left(K\left[G L_{n}\right], K\right)=K^{n \times n}$ constructed in (a), the Lie bracket of point derivations corresponds to the Lie bracket of matrices

$$
K^{n \times n} \times K^{n \times n} \rightarrow K^{n \times n} \quad, \quad(A, B) \mapsto[A, B]=A B-B A .
$$

Remark: One can show (by a direct, but annoying computation), that the Lie bracket defined above, coincides with the Lie bracket on $\mathscr{L}\left(G L_{n}\right)$ under the isomorphism $\operatorname{Der}_{K}\left(K\left[G L_{n}\right], K\left[G L_{n}\right]\right)^{G L_{n}} \cong$ $\operatorname{Der}_{K}\left(K\left[G L_{n}\right], K\right)$. Thus we can conclude that $\mathscr{L}\left(G L_{n}\right) \cong K^{n \times n}$ as Lie algebras.
Note moreover that all constructions done in this project can be generalized to arbitrary algebraic groups G.
Solutions to this project will give additional marks.
Please turn this page around for the other three exercises.

E 14 (Lie algebra of $S L_{n}$)

(a) Show that the canonical inclusion $i: S L_{n} \rightarrow G L_{n}$ induces an injection

$$
d_{e} i: T\left(S L_{n}\right) \rightarrow T\left(G L_{n}\right) \cong K^{n \times n} .
$$

(b) Describe the image of $d_{e} i$ explicitly and conclude that we have an isomorphism of Liealgebras

$$
\mathscr{L}\left(S L_{n}\right) \cong\left\{A \in K^{n \times n} \mid \operatorname{tr}(A)=0\right\}
$$

Here we use again the Lie bracket $[A, B]=A B-B A$ for all $A, B \in K^{n \times n}$ of trace 0 .

E 15 (Derivations of some morphisms) Throughout this exercise we identify $T\left(G L_{n}\right)=K^{n \times n}$.
(a) Let $i_{1}: G L_{n} \rightarrow G L_{n} \times G L_{n}, g \mapsto(g, 1)$ and $i_{2}: G L_{n} \rightarrow G L_{n} \times G L_{n}, g \mapsto(1, g)$ be the canonical inclusions. Show that their derivations yield an isomorphism

$$
d_{e} i_{1} \oplus d_{e} i_{2}: T\left(G L_{n}\right) \oplus T\left(G L_{n}\right) \rightarrow T\left(G L_{n} \times G L_{n}\right)
$$

(b) Using the identification of (a), show that the derivation of the multiplication map $m: G L_{n} \times$ $G L_{n} \rightarrow G L_{n}$ is given by

$$
d_{e} m: T\left(G L_{n}\right) \oplus T\left(G L_{n}\right) \cong T\left(G L_{n} \times G L_{n}\right) \rightarrow T\left(G L_{n}\right) \quad, \quad(A, B) \rightarrow A+B
$$

Hint: Compute (in two ways!) the derivations of $m \circ i_{1}$ and $m \circ i_{2}$.
(c) Show that the derivation of the inverse map $\mathrm{t}: G L_{n} \rightarrow G L_{n}$ is given by

$$
d_{e} \mathrm{l}: T\left(G L_{n}\right) \rightarrow T\left(G L_{n}\right) \quad, \quad A \rightarrow-A
$$

Hint: Use that the composition $G L_{n} \xrightarrow{\text { diagonal }} G L_{n} \times G L_{n} \xrightarrow{\text { (id, })} G L_{n} \times G L_{n} \xrightarrow{m} G L_{n}$ maps everything to the unit element, hence has vanishing derivation.
(d) Show that the derivation of the transpose ${ }^{T}: G L_{n} \rightarrow G L_{n}$ is given by

$$
d_{e}{ }^{T}: T\left(G L_{n}\right) \rightarrow T\left(G L_{n}\right) \quad, \quad A \rightarrow A^{T}
$$

E 16 (Lie algebra of O_{n}) Consider the orthogonal group $O_{n}=\left\{A \in G L_{n} \mid A \cdot A^{T}=1_{n}\right\} \subset G L_{n}$ and assume $\operatorname{char}(K) \neq 2$. Use the statements of the previous exercise to show that its Lie algebra is given by

$$
\mathscr{L}\left(O_{n}\right)=\left\{A \in K^{n \times n} \mid A=-A^{T}\right\}
$$

as a sub-Lie algebra of $\mathscr{L}\left(G L_{n}\right)=K^{n \times n}$.
Remark: You may use the fact $\operatorname{dim} O_{n}=\frac{1}{2} n(n-1)$ without proof.

Solutions to the exercises will be available from November 6, 2014 on, at

