Prof. Dr. Gregor Kemper M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 12.11.2014, during the lecture)

In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

E 17 (Examples of quotients)

- (a) Let $T_n \subset GL_n$ be the subgroup of upper triangular matrices and $U_n \subset GL_n$ the subgroup of all upper triangular matrices with all diagonal elements equal to 1. Show that the quotient T_n/U_n is an affine variety and describe this variety explicitly.
- (b) Let $T \subset SL_2$ be the subgroup of all upper triangular matrices with determinant 1. Show then that the quotient SL_2/T is isomorphic to the projective line \mathbb{P}^1 .
- **E 18** (Irreducibility of quotients) Let G be an algebraic group and $H \subset G$ a closed subgroup. Show that the following statements are equivalent:
 - (i) The quotient G/H is irreducible.
 - (ii) For all connected components $Z \subset G$, the intersection $Z \cap H$ is non-empty.
 - (iii) G is generated by H and the identity component G^0 .
- **E 19 (Computing the Jordan decomposition)** Compute the (multiplicative) Jordan decomposition of the element

$$g = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & -1 \end{pmatrix} \in SL_3$$

Hint: Start by computing the additive Jordan decomposition of *g*.

- **E 20** (Jordan decomposition of SL_2) Consider the algebraic group SL_2 and the set of all unipotent elements SL_{2u} respectively all semi-simple elements SL_{2s} .
 - (a) Show that neither SL_{2u} nor SL_{2s} is a subgroup.
 - (b) Show that SL_{2u} is not open in SL_2 .
 - (c) Show that SL_{2s} is not closed in SL_2 .
 - (d) Show that SL_{2s} is not open in SL_2 .

Solutions to the exercises will be available from November 13, 2014 on, at

https://www-m11.ma.tum.de/lehre/wintersemester-201415/ws1415-linear-algebraic-groups/