Prof. Dr. Gregor Kemper M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 19.11.2014, during the lecture)

In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

- **E 21** (Jordan decomposition) Give an example of a (non-closed) subgroup $G \subset GL_n$ and an element $g \in G$ with Jordan decomposition $g = g_s \cdot g_u$ with $g_s, g_u \in GL_n$ such that $g_s, g_u \notin G$.
- **E 22** (Connectedness of unipotent groups) For this exercise assume char K = 0.
 - (a) Let G be an arbitrary algebraic group. Show that any element of finite order in G is semi-simple.
 - (b) Let $G \subset GL_n$ be a subgroup consisting of unipotent elements. Show that G is connected.

Remark: Note that these statements are wrong in positive characteristic.

E 23 (Commutative groups) Let G be an algebraic group. Show that the maps

$$\begin{aligned} \varphi_s &: G \to G \quad , \quad g \mapsto g_s \\ \varphi_u &: G \to G \quad , \quad g \mapsto g_u \end{aligned}$$

are morphisms of affine varieties. Deduce for a commutative algebraic group *G*, that the morphism $(\varphi_s, \varphi_u) : G \to G_s \times G_u$ is a morphism of algebraic groups. *Remark:* This finishes the proof of $G \cong G_s \times G_u$ for commutative algebraic groups.

E 24 (Non-closed commutator subgroups) For any two closed subgroups $A, B \subset GL_n$, define their commutator subgroup $(A, B) \subset GL_n$ as the subgroup generated by all elements of the form $aba^{-1}b^{-1}$, $a \in A, b \in B$. Give an example such that the commutator subgroup $(A, B) \subset GL_n$ is not closed. *Hint:* Use for *A* and *B* finite subgroups generated by non-commuting elements.

Solutions to the exercises will be available from November 20, 2014 on, at

https://www-m11.ma.tum.de/lehre/wintersemester-201415/ws1415-linear-algebraic-groups/