Prof. Dr. Gregor Kemper M. Sc. Stephan Neupert

Linear Algebraic Groups (MA 5113)

Exercises (to be turned in: Wednesday, 10.12.2014, during the lecture)

In all exercises K denotes an algebraically closed field and all algebraic groups are defined over this field.

- **E 33** (Unipotent groups characterized by representations) Let *G* be an algebraic group. Assume that for every representation $\rho : G \to GL(V)$ there exists a non-zero *G*-invariant vector $v \in V$. Show that *G* is unipotent.
- **E 34** (Additive subgroups) Let G be a unipotent algebraic group of dimension at least 1. Prove that G contains a normal subgroup isomorphic to \mathbb{G}_a .
- **E 35** (Unipotent 2-dimensional groups) Consider the algebraic group *G* with underlying affine variety K^2 and multiplication given by

$$(x,y) \cdot (x',y') = (x+x', y+y'+x^2 \cdot x'+x \cdot x'^2)$$
 for all $(x,y), (x',y') \in K^2$

- (a) Show that *G* is an abelian algebraic group.
- (b) Prove that *G* is unipotent.
- (c) Assume now that K has characteristic p = 3. Show that G is not isomorphic to \mathbb{G}_a^2 .

Hint: For the last part of this exercise, show that any morphism $f : \mathbb{G}_a \to G$ is constantly zero on the first coordinate of *G*.

Remark: Via a similar construction one may define, for every field K of positive characteristic, a 2-dimensional connected, abelian, unipotent group not isomorphic to \mathbb{G}_a^2 . Note however that in characteristic 0 one may show that all 2-dimensional unipotent groups are isomorphic to \mathbb{G}_a^2 (and in particular automatically abelian).

E 36 (Orbits of unipotent groups) Let G be a unipotent algebraic group acting on an affine variety X. Show that each orbit of G in X is closed.

Hint: Reduce first to the situation that the orbit is open in *X*. Then consider the ideal in K[X], defining its complement. What can you say about *G*-invariant elements in this ideal?

Solutions to the exercises will be available from December 11, 2014 on, at

https://www-m11.ma.tum.de/lehre/wintersemester-201415/ws1415-linear-algebraic-groups/