Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 22.10.2015, before the lecture)

- A 1 Are the following objects topological spaces or not? Give a brief explanation.
 - (a) $X_1 = \mathbb{R}$ and $\mathcal{T}_1 = \{U \subset X_1 | U \text{ is a union of open intervals}\}$
 - (b) $X_2 = \mathbb{R}$ and $\mathcal{T}_2 = \{U \subset X_2 \mid U \text{ is a finite set}\} \cup \{X_2\}$
 - (c) $X_3 = \mathbb{R}$ and $\mathcal{T}_3 = \{U \subset X_3 | X_3 \setminus U \text{ is a finite set}\} \cup \{\emptyset\}$
 - (d) $X_4 = \mathbb{R} \times \mathbb{R}$ and $\mathcal{T}_4 = \{ U \times U' \subset X_4 | U \text{ and } U' \subset \mathbb{R} \text{ are unions of open intervals} \}$
- A 2 (a) Let X be a set and $\{\mathcal{T}_i\}_{i \in I}$ a family of topologies on X (indexed by some set I). Show that the intersection $\bigcap_{i \in I} \mathcal{T}_i = \{U \subset X | U \in \mathcal{T}_i \ \forall i \in I\}$ is another topology on X.
 - (b) Find an example of a set *X* and two topologies \mathcal{T}_1 and \mathcal{T}_2 on *X*, such that their union $\mathcal{T}_1 \cup \mathcal{T}_2 = \{U \subset X | U \in \mathcal{T}_1 \text{ or } U \in \mathcal{T}_2\}$ is *not* a topology on *X*.
 - (c) Let X be a set, \mathcal{T}_1 and \mathcal{T}_2 two topologies on X. Show that there is a unique topology \mathcal{T} on X with $\mathcal{T}_1 \cup \mathcal{T}_2 \subset \mathcal{T}$, such that any other topology \mathcal{T}' with $\mathcal{T}_1 \cup \mathcal{T}_2 \subset \mathcal{T}'$ is finer than \mathcal{T} .

Hint for (c): Consider the intersection of all topologies containing $\mathcal{T}_1 \cup \mathcal{T}_2$. Alternatively you can show that \mathcal{T} is the unique topology for which $\mathcal{T}_1 \cup \mathcal{T}_2$ is a subbasis.

A 3 Let $X = \mathbb{R}$ and $\mathcal{T} = \{(-r, r) \subset \mathbb{R} \mid r \in \mathbb{R}, r > 0\} \cup \{\mathbb{R}, \emptyset\}$ a topology on *X*. Moreover let

$$f: (X, \mathcal{T}) \to (X, \mathcal{T})$$
 , $f(x) = \begin{cases} -x & \text{if } |x| < 1\\ 2x & \text{if } |x| \ge 1 \end{cases}$

- (a) Is f continuous? Is f open? Is f closed?
- (b) Show that (X, \mathcal{T}) is second-countable.
- (c) Find the set of all limits of the sequence $(x_n)_{n \in \mathbb{N}}$ given by $x_n = 1 + \frac{1}{n} \in X$.
- (d) Find the interior \mathring{M} and the boundary ∂M of the set $M = [-1,2] \subset X$.

Solutions to the exercises will be available from October 22, 2015 on, at

https://www-m11.ma.tum.de/viehmann/topology/

The Notenbonus can be obtained by making for at least 70% of all exercises a serious effort to solve it.