Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 14.1.2016, before the lecture)

- **A 30** (a) Compute the pushout of groups $\mathbb{Z} *_{\mathbb{Z} \times \mathbb{Z}} \mathbb{Z}$ for the morphisms $f_1 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(x, y) \to 2x + 3y$ and $f_2 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(x, y) \to 3x + 2y$.
 - (b) Let $f: G_0 \to G_1$ be any morphism of groups and denote the trivial group by $\{e\}$. Let H be the normal closure of $f(G_0)$ in G_1 , i.e. the smallest normal subgroup of G_1 containing $f(G_0)$. Show that

$$G_1 *_{G_0} \{e\} \cong G_1/H$$

- A 31 Solve exercise A29b) now, i.e. compute the fundamental group of the Klein bottle $K = I \times I / \sim$, where $(x,0) \sim (x,1)$ and $(0,y) \sim (1,1-y)$, using the theorem of Seifert-van Kampen.
- A 32 Compute the fundamental group of the following spaces in any way you want.
 - (i) The real projective space $\mathbb{R}P^n = \mathbb{S}^n/(x \sim -x)$ for $n \geq 2$.
 - (ii) The union of three circles touching each other, i.e. $X = \partial B_{\frac{\sqrt{3}}{2}}(1) \cup \partial B_{\frac{\sqrt{3}}{2}}(\zeta_3) \cup \partial B_{\frac{\sqrt{3}}{2}}(\zeta_3^2) \subset \mathbb{C}$, where ζ_3 is a primitive third root of unity.
 - (iii) The Möbius strip $M = I \times I / \sim$, where $(0, y) \sim (1, 1 y)$ for all $x \in I$.

Solutions to the exercises will be available from January 14, 2016 on, at

https://www-m11.ma.tum.de/viehmann/topology/