Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 21.1.2016, before the lecture)

A 33 Let *X* be the connected sum of a torus *T* and $\mathbb{R}P^2$.

- (a) Compute its fundamental group $\pi_1(X)$.
- (b) Show that the abelianization $\pi_1(X)^{ab}$ is isomorphic to $\mathbb{Z} \times \mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$.
- (c) Prove that *X* is neither homeomorphic to S_g for any $g \ge 1$ nor to N_k for any $k \ne 3$.
- A 34 Let $f: X \to B$ and $g: B' \to B$ be morphisms of topological spaces. Let $f': X' = X \times_B B' \to B'$ be the pullback of f along g.
 - (a) Assume that f is a fiber bundle with typical fiber F. Prove that f' is again a fiber bundle with typical fiber F.
 - (b) Assume that g is a covering morphism between path-connected and locally path-connected Hausdorff spaces and that f' is a fiber bundle with typical fiber F. Prove that f is a fiber bundle with the same typical fiber.
- **A 35** Consider the Grassmannian $Gr_k(\mathbb{C}^n)$ and the space

$$X = \{ (V, v) \in Gr_k(\mathbb{C}^n) \times \mathbb{C}^n \, | \, v \in V \}$$

together with the projection on the first factor $pr : X \to Gr_k(\mathbb{C}^n)$. Prove that X is a fiber bundle over $Gr_k(\mathbb{C}^n)$ with typical fiber \mathbb{C}^k .

Hint: For any k-dimensional space $W \subset \mathbb{C}^n$ with orthogonal complement W^{\perp} consider the subspace

$$U_W = \{ V \in Gr_k(\mathbb{C}^n) \, | \, V \cap W^{\perp} = 0 \} \subset Gr_k(\mathbb{C}^n).$$

Show first that U_W is open and that $pr: X \to Gr_k(\mathbb{C}^n)$ trivializes over U_W .

Solutions to the exercises will be available from January 21, 2016 on, at

https://www-m11.ma.tum.de/viehmann/topology/