Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 28.1.2016, before the lecture)

- A 36 Let *B* and *F* be Hausdorff and locally compact topological spaces. Let $f : X \to B$ be a fiber bundle with typical fiber *F* and fix one atlas $A = \{U_i, g_i : f^{-1}(U_i) \to U_i \times F\}$ for *f* with transition functions $t_{i,j} = (g_j \circ g_i^{-1})^{\sharp} : U_i \cap U_j \to \operatorname{Aut}(F).$
 - (a) Assume that $f: X \to B$ is the trivial fiber bundle. Prove that there are functions $\psi_i: U_i \to \operatorname{Aut}(F)$ on all U_i such that $t_{i,j} = \psi_i^{-1} \cdot \psi_i$ for all i, j.
 - (b) Prove the converse: Assume there are functions $\psi_i : U_i \to \operatorname{Aut}(F)$ on all U_i such that $t_{i,j} = \psi_j^{-1} \cdot \psi_i$ for all i, j, then $f : X \to B$ is the trivial fiber bundle.
- A 37 In this exercise we construct lots of different S^1 -bundles over S^2 .
 - (a) Show that the Hopf fibration $h : \mathbb{S}^3 \to \mathbb{S}^2$ is not homeomorphic to the trivial \mathbb{S}^1 -bundle over \mathbb{S}^2 .
 - (b) Fix an integer $n \ge 1$ and a primitive root of unity $\zeta_n \in \mathbb{C}$. Define the *n*th lens space L_n as the quotient of \mathbb{S}^3 by the equivalence relation induced by $(z, z') \sim (\zeta_n z, \zeta_n z')$ for all (z, z'). Prove that the Hopf fibration induces a fibration $h_n : L_n \to \mathbb{S}^2$ with typical fiber \mathbb{S}^1 .
 - (c) Show that no two fibrations $h_n: L_n \to \mathbb{S}^2$ are homeomorphic as \mathbb{S}^1 -bundles over \mathbb{S}^2 .

Remark: One can show that any \mathbb{S}^1 -bundles over \mathbb{S}^2 is either homeomorphic to the trivial bundle or to one of the $h_n : L_n \to \mathbb{S}^2$ for some $n \ge 1$.

Solutions to the exercises will be available from January 28, 2016 on, at

https://www-m11.ma.tum.de/viehmann/topology/