Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Some open-ended Exercises (not to be handed in)

- A 38 Consider $X = \mathbb{R}$ together with the topology where a non-empty subset $U \subset X$ is open if and only if there is some $N \gg 0$ such that $(-\infty, N) \cup (N, \infty) \subset U$. Check that this indeed defines a topology on X. What properties does X have and which are not satisfied?
- A 39 Fix N ∈ {0,1,2,3,4}. Let X,Y,Z be topological spaces satisfying the separation axiom (TN) (for the chosen number N) and let f : X → Z and g : Y → Z two continuous morphisms. Does it follow that the fiber product space X ×_Z Y is again (TN)?
 Warning: The case (T4) is difficult!
- A 40 Consider a cube $I^3 \subset \mathbb{R}^3$ and identify each pair of opposite faces. What is the fundamental group of this space? What happens if you identify the faces in some other fashion?
- A 41 Fix a unit vector $e \in \mathbb{S}^2 \subset \mathbb{R}^3$ and consider the map $SO(3) \to \mathbb{S}^2$ given by mapping $A \in SO(3)$ to the vector $A \cdot e \in \mathbb{S}^2$. Show that this is a fibration. What are the fibers? What more can you say about this morphism?