Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 12.11.2015, before the lecture)

- A 10 Consider the following two topological spaces *X* and *Y*:
 - (i) X = ℝ +_{ℝ\{0}} ℝ is the line with a double point. More explicitly, X has the underlying set of points (ℝ \ {0}) ∪ {0₁, 0₂} and the unique topology, such that the two canonical maps ℝ → X mapping 0 to either 0₁ or 0₂ are continuous and open.
 - (ii) *Y* is the set of real numbers \mathbb{R} with the topology given by the basis

 $\mathcal{B} = \{(a,b) \mid a < b\} \cup \{(a,b) \cap (\mathbb{R} \setminus Z) \mid a < b\}$

where $Z = \{\frac{1}{n} | n \in \mathbb{Z}, n > 0\}.$

Decide for both spaces, which of the separation properties (T0), (T1), (T2), (T3) and (T4) they satisfy.

- A 11 (a) Prove that on every set X, there exists a unique coarsest topology \mathcal{T} such that (X, \mathcal{T}) is (T1).
 - (b) Show that the topological space (X, \mathcal{T}) defined in (a) is compact.
 - (c) Let Y be a topological space, which is (T2). Prove that every sequence in Y converges to at most one point in Y.

A 12 Let X be any topological space, Y be compact and $f: X \to Y$ a map.

- (a) Prove that the projection $pr_1: X \times Y \to X$ is a closed map.
- (b) Prove that $f: X \to Y$ is continuous if its graph $\Gamma(f)$ (cf. exercise A5) is closed in $X \times Y$.
- (c) Give counterexamples to the assertions in (a) and (b), if Y is allowed to be non-compact.

Solutions to the exercises will be available from November 12, 2015 on, at

https://www-m11.ma.tum.de/viehmann/topology/