Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 26.11.2015, before the lecture)

A 16 We give an alternative proof of Tychonoff's theorem in this exercise, based on the Lemma of Alexander:

Let X be a topological space with a subbasis S. Then X is compact, if every open cover $\{U_i\}_{i \in I} \subset S$ of sets in the subbasis, contains a finite open subcover.

(a) Assume X is any topological space and $\{U_i\}_{i \in I}$ any cover of X. Then consider the set

 $\mathscr{C} = \left\{ \{V_j\}_{j \in J} \mid \{U_i\}_{i \in I} \subset \{V_j\}_{j \in J} \text{ and } \{V_j\}_{j \in J} \text{ does not contain a finite subcover} \right\}$

with the partial order given by inclusion. Assume \mathscr{C} is nonempty. Prove that \mathscr{C} contains a maximal element using the Lemma of Zorn.

- (b) Fix now any subbasis S for X. Assume again that \mathscr{C} is nonempty and let $\{V_j\}_{j\in J}$ be a maximal element in \mathscr{C} . Prove that for all $x \in X$ there exists some index $j \in J$ such that $x \in V_j \in S$.
- (c) Conclude that the Lemma of Alexander holds.
- (d) Use the Lemma of Alexander to prove Tychonoff's theorem.
- A 17 Our goal here is to prove the following statement:

Assume that X is Hausdorff, Y is locally compact and Z is any topological space. Then the adjunction map $Hom(X \times Y, Z) \rightarrow Hom(X, Hom(Y, Z))$ is a homeomorphism.

- (a) Assume that *Y* is locally compact and *X*, *Z* are any topological spaces. Let $C_X \subset X$ and $C_Y \subset Y$ be compact subspaces, $U \subset Z$ open. Prove that the adjunction map defines a bijection between $M(C_X \times C_Y, U) \subset Hom(X \times Y, Z)$ and $M(C_X, M(C_Y, U)) \subset Hom(X, Hom(Y, Z))$.
- (b) Assume X is Hausdorff, T any topological space with a basis \mathcal{B} of the topology. Prove that $\{M(C_X, U) | C_X \subset X \text{ compact}, U \in \mathcal{B}\}$ is a subbasis for the CO-topology on Hom(X, T).
- (c) Prove that under the same assumptions as in part (b), $\{M(C_X, U) | C_X \subset X \text{ compact}, U \in S\}$ is a subbasis for the CO-topology on Hom(X, T), whenever S is a subbasis for the topology on T.
- (d) Conclude that the statement at the beginning holds, i.e. that the adjunction map is a homeomorphism.

Remark: You may use the following lemma (known from the exercise classes) without proof: If *C* is compact and Hausdorff, $x \in C$ any point and $U \subset C$ an open neighborhood of *x*, then there exists a compact neighborhood $A \subset C$ of *x* with $A \subset U$.

Solutions to the exercises will be available from November 26, 2015 on, at

```
https://www-m11.ma.tum.de/viehmann/topology/
```