Prof. Dr. Eva Viehmann M. Sc. Stephan Neupert

Topology (MA 3241)

Exercises (to be handed in Thursday, 10.12.2015, before the lecture)

- A 21 Let $f_1, f_2: X \to X'$ and $g_1, g_2: Y \to Y'$ be morphisms such that $f_1 \simeq f_2$ and $g_1 \simeq g_2$ are homotopic.
 - (a) Prove that $f_1 + g_1 \simeq f_2 + g_2 : X + Y \rightarrow X' + Y'$ are homotopic.
 - (b) Prove that $f_1 \times g_1 \simeq f_2 \times g_2 : X \times Y \to X' \times Y'$ are homotopic.
 - (c) Assume that all spaces X, X', Y and Y' are locally compact. Prove that

 $g_1 \circ (-) \circ f_1 \simeq g_2 \circ (-) \circ f_2 : \operatorname{Hom}(X',Y) \to \operatorname{Hom}(X,Y')$

are homotopic, when the homomorphism spaces are endowed with the CO-topology.

- A 22 (a) Show that $GL_2(\mathbb{R})^+ = \{g \in GL_2(\mathbb{R}) \mid \det(g) > 0\}$ and $SL_2(\mathbb{R})$ are homotopy equivalent.
 - (b) Show that $GL_2(\mathbb{R})^+$ and $SO_2(\mathbb{R})$ are homotopy equivalent.
 - (c) Conclude that $GL_2(\mathbb{R})$ is homotopy equivalent to $\mathbb{S}^1 + \mathbb{S}^1$.

Solutions to the exercises will be available from December 10, 2015 on, at

https://www-m11.ma.tum.de/viehmann/topology/