Some additional exercises...

Let k be a field and assume (for simplicity) that k is algebraically closed. Our aim is to investigate the scheme

$$X = \operatorname{Proj}\left(k[s, t, x, y]/(sx - ty)\right)$$

where k[s, t, x, y]/(sx - ty) is the graded ring with grading given by deg(s) = deg(t) = 0 and deg(x) = deg(y) = 1.

Question 1: Show that k[s,t,x,y]/(sx-ty) is indeed a graded ring. Describe all elements of degree 2.

Question 2: Compute $\mathcal{O}_X(X)$, $\mathcal{O}_X(D(s))$ and $\mathcal{O}_X(D(x))$.

Question 3: Show that $D(x) \cong \mathbb{A}_k^2 \cong D(y)$ are affine open subschemes of X. Show that they cover X.

Question 4: Is X reduced? Is it irreducible?

Question 5: Show that there is a unique morphism of schemes $\pi : X \to \mathbb{A}_k^2 = \operatorname{Spec}(k[\overline{s},\overline{t}])$ such that the map $\pi^{\sharp} : \mathcal{O}_{\mathbb{A}_k^2}(\mathbb{A}_k^2) \to \mathcal{O}_X(X)$ on global sections satisfies $\pi^{\sharp}(\overline{s}) = s$ and $\pi^{\sharp}(\overline{t}) = t$.

Question 6: Let $p \in \mathbb{A}_k^2$ be a closed point. Describe the fiber $\pi^{-1}(p)$ (as a scheme). (Hint: Recall that if $S = \bigoplus_i S_i$ is graded and $S_0 \to R_0$ is any morphism of rings, then there is an isomorphism $\operatorname{Proj}(S) \times_{\operatorname{Spec} S_0} \operatorname{Spec} R_0 \cong \operatorname{Proj}(S \otimes_{S_0} R_0)$, where we use the grading $S \otimes_{S_0} R_0 = \bigoplus_i (S_i \otimes_{S_0} R_0)$.)

Question 7: Is π quasi-compact, of finite type, quasi-finite, finite, affine, separated, proper? (Hint: Feel free to embed X into a projective space or to base-change X to some closed point of \mathbb{A}_k^2 .)

Question 8: Use the fiber over the point $(\overline{s}, \overline{t}) \in \mathbb{A}^2_k$ to show that $D(s+1) \subset X$ is not affine.

Question 9: Compute the evaluation of the sheaves $\Omega_{X/k}$ and $\Omega_{X/\mathbb{A}_k^2}$ on the open affine subscheme $D(x) \subset X$.

Question 10: Consider $\mathbb{P}^1_k = \operatorname{Proj} k[\overline{x}, \overline{y}]$ (where $\deg(\overline{x}) = \deg(\overline{y}) = 1$). Show that $pr^{\sharp} : k[\overline{x}, \overline{y}] \to k[s, t, x, y]/(sx - ty) \qquad \overline{x} \mapsto x \ , \ \overline{y} \mapsto y$

is a morphism of graded rings. Deduce that it defines a morphism $pr: X \to \mathbb{P}^1_k$.

Question 11: Show that there is a cover of \mathbb{P}^1_k by open subschemes U_i such that there are isomorphisms $pr^{-1}(U_i) \cong U_i \times_{\text{Spec } k} \mathbb{A}^1_k$ for each U_i .

Question 12: Is pr quasi-compact, of finite type, quasi-finite, finite, affine, separated, proper?

Question 13: Prove that X is not isomorphic to $\mathbb{P}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k$. (Hint: Compare global sections.)

Question 14*: Consider the invertible sheaf $\mathcal{O}_{\mathbb{P}^1_k}(1)$ on \mathbb{P}^1_k . Over every open affine $U \subset \mathbb{P}^1_k$ take the symmetric algebra $Sym(\mathcal{O}_{\mathbb{P}^1_k}(1)(U))$ as an algebra over $\mathcal{O}_{\mathbb{P}^1_k}(U)$. Thus we may cosider the schemes $Spec\left(Sym(\mathcal{O}_{\mathbb{P}^1_k}(1)(U))\right) \to U$. Show that for any two such open subsets $U, V \subset \mathbb{P}^1_k$ the canonical isomorphism $(\mathcal{O}_{\mathbb{P}^1_k}(1)|_U)(U \cap V) \cong (\mathcal{O}_{\mathbb{P}^1_k}(1)|_V)(U \cap V)$ induces an isomorphism

$$\operatorname{Spec}\left(Sym(\mathcal{O}_{\mathbb{P}^{1}_{k}}(1)(U))\right) \times_{U} (U \cap V) \cong \operatorname{Spec}\left(Sym(\mathcal{O}_{\mathbb{P}^{1}_{k}}(1)(V))\right) \times_{V} (U \cap V)$$

over $U \cap V$. Use these isomorphisms to glue the schemes $\operatorname{Spec}\left(Sym(\mathcal{O}_{\mathbb{P}^1_k}(1)(U))\right)$ (for all open affines U) to a scheme $\underline{\operatorname{Spec}}_{\mathbb{P}^1_k}\left(Sym(\mathcal{O}_{\mathbb{P}^1_k}(1))\right)$. Finally construct an isomorphism

$$X \cong \underline{\operatorname{Spec}}_{\mathbb{P}^1_k} \left(Sym(\mathcal{O}_{\mathbb{P}^1_k}(1)) \right)$$

of schemes over \mathbb{P}^1_k .