Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in January 23, before the lecture.

Exercise 1. Let k be a field and $X = V(T_2^2 - T_1^3 - T_1) \subseteq \mathbb{A}^2_k = \operatorname{Speck}[T_1, T_2]$. Is $X \to \operatorname{Speck}$ separated, of finite type and proper? Try to find one proof using the definition and one using the valuative criterion for properness.

Exercise 2. Let k be an algebraically closed field and X a proper integral k-scheme.

- 1. Show that $\mathcal{O}_X(X) = k$. (Hint: Construct morphisms $X \to \mathbb{A}^1_k \to \mathbb{P}^1_k$ out of sections.)
- 2. Let $f: X \to Y = \operatorname{Spec} R$ be a map to an affine scheme. Show that f(X) consists of one point.
- 3. Let R be a finitely generated algebra over a field k, and assume that R is not zero-dimensional. Show that $\operatorname{Spec} R \to \operatorname{Spec} k$ is not proper.

Exercise 3. Compute the tangent spaces $T_x X$ for

- 1. $X = \text{Spec}k[s,t]/(t^2 + s^3 s^2)$ and x = (0,0) resp. x = (1,0).
- 2. $X = \text{Spec}k[[s,t]]/(st,t^2)$ and x = (0,0).

Exercise 4. Let S be a scheme and $X \to S$ be a proper morphism of schemes. Let $Y \to S$ be separated and $f: X \to Y$ an S-morphism. Show that $f(X) \subset Y$ is closed. (Hint: Consider the graph of f.)

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de