Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in November 7, before the seminar talk. We fix a topological space X.

Exercise 1. Let $Z \subset X$ be a closed subset of X. We note U := X - Z the complement of Z. Denote $i : Z \to X, j : U \to X$ the morphisms of inclusion.

- 1. Let \mathcal{H} be a sheaf on Z, and $x \in X$. Calculate the stalk $(i_*\mathcal{H})_x$.
- 2. Suppose \mathcal{F} is a sheaf on U. Define the sheaf $j_!\mathcal{F}$ on X as the sheafification of the following presheaf: $V \mapsto \mathcal{F}(V)$ if $V \subset U$, $V \mapsto 0$ otherwise. Calculate $(j_!\mathcal{F})_x$ for all $x \in X$. Prove the following adjointness

$$\operatorname{Hom}(j_{!}\mathcal{F},\mathcal{G}) = \operatorname{Hom}(\mathcal{F},j^{-1}\mathcal{G})$$

for any sheaf \mathcal{G} on X.

Exercise 2. Let $(X_i)_{i \in I}$ be an open covering of X. Suppose for each i we have a sheaf \mathcal{F}_i on X_i , and for each i, j in I, we have an isomorphism of sheaves on $X_i \cap X_j$

$$\varphi_{ji}: \mathcal{F}_i|_{X_i \cap X_j} \xrightarrow{\sim} \mathcal{F}_j|_{X_i \cap X_j},$$

which satisfies the following properties:

- 1. $\varphi_{ii} = \mathrm{id}_{\mathcal{F}_i}$ for each i;
- 2. $\varphi_{kj} \circ \varphi_{ji} = \varphi_{ki}$ on $X_i \cap X_j \cap X_k$ for each i, j, k in I.

Prove that we can glue sheaves: there exists a unique sheaf \mathcal{F} on X, with an isomorphism

$$\theta_i: \mathcal{F}|_{X_i} \xrightarrow{\sim} \mathcal{F}_i$$

for each *i*, such that $\varphi_{ji} \circ \theta_i = \theta_j$ on $X_i \cap X_j$ for all *i* and *j*.

Exercise 3. Let \mathcal{F}, \mathcal{G} be two sheaves on X. For every open subset $U \subset X$, we note $\mathcal{F}|_U$ and $\mathcal{G}|_U$ their restrictions on U. Prove that the map $U \mapsto \operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$ defines a sheaf on X. This sheaf is called the *sheaf Hom* and noted as $\operatorname{Hom}(\mathcal{F}, \mathcal{G})$ by some authors.

Exercise 4. In this exercise, we assume that (X, \mathcal{O}_X) is a locally ringed space.

- 1. Suppose $U \subset X$ is an open and closed subset. Show that there exists a unique element $e_U \in \mathcal{O}_X(X)$, such that $e_U|_U = 1$ and $e_U|_{X-U} = 0$.
- 2. An element a in a ring is called *idempotent* if $a^2 = a$. Show that, the map $U \mapsto e_U$ gives a bijection between open and closed subsets of X and idempotent elements in $\mathcal{O}_X(X)$. (Hint: one may consider the value at each point of X of the idempotent element in $\mathcal{O}_X(X)$.)

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de