Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in November 21, before the seminar talk.

Exercise 1.

Let k be a field. Construct a morphism of schemes $f : \mathbb{P}^1_k \to \mathbb{P}^1_k$ such that on k-points we have $f((x_1 : x_2)) = (x_1^2 : x_2^2)$.

Exercise 2.

- 1. Let R be a ring. Prove that $\mathcal{O}_{\mathbb{P}^n_R}(\mathbb{P}^n_R) \cong R$.
- 2. Let k be a field. Let f be a morphism from \mathbb{P}_k^n to an affine scheme X. Prove that $f(\mathbb{P}_k^n)$ consists of a single point of X.

Exercise 3.

Let $R = \bigoplus_{d \ge 0} R_d$ be a graded ring, i.e. each R_d is an abelian group, and for all $d, e \in \mathbb{N}$, the multiplication of \overline{R} satisfies $R_d R_e \subset R_{d+e}$.

- 1. Show that an ideal $I \subseteq R$ is generated by homogenous elements if and only if $I = \bigoplus_d (I \cap R_d)$. Such ideals are called homogenous.
- 2. Show that the sum, product, intersection, and radical of homogeneous ideals are again homogeneous.
- 3. Let I be a homogenous ideal. Show that I is prime if and only if for all homogeneous elements $f, g \in R$ with $fg \in I$, we have $f \in I$ or $g \in I$.

Exercise 4.

In this exercise, we introduce a finiteness property which has not appeared in the seminar (but is of equal importance). We focus on the case of affine schemes. Suppose we have a morphism of rings $\varphi : A \to B$ which induces the morphism $f : \operatorname{Spec} B \to \operatorname{Spec} A$ of affine schemes. We say that f is *finite* if the ring B, when regarded as an A-module via φ , is finitely generated. We say that f is quasi-finite if for all $\mathfrak{p} \in \operatorname{Spec} A$, the set $f^{-1}(\mathfrak{p})$ is finite. Prove that if f is finite, then it is quasi-finite.

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de