Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Shinan Liu

Algebraic Geometry

To be handed in December 19, before the lecture.

Exercise 1.

- 1. Let X be the affine line with double origin (as in Example 3.5.12) and $X \to \mathbb{A}_k^1$ the morphism which is the identity on each of the two copies of \mathbb{A}_k^1 . Describe $X \times_{\mathbb{A}_k^1} X$.
- 2. What happens if we replace one of the copies of X by X_1 : the affine line with a doubled point at 1?

Exercise 2+3.

1. Let R be a ring, N an R-module and

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

an exact sequence of R-modules. Prove that

$$0 \to \operatorname{Hom}(M'', N) \to \operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N)$$

is exact (where all Hom-sets are in the category of *R*-modules).

2. Prove that for R-modules M, N, P we have a canonical isomorphism

 $\operatorname{Hom}(M \otimes N, P) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, P))$

3. Use the previous results to show that in the context of 1., the sequence

$$M' \otimes_R N \stackrel{f \otimes 1}{\to} M \otimes_R N \stackrel{g \otimes 1}{\to} M'' \otimes_R N \to 0$$

is exact. ("The tensor product with N is a right exact functor.")

4. Find an example for $R = \mathbb{Z}$ showing that in general, injectivity of f does not imply injectivity of $f \otimes 1$. ("The tensor product with N is in general not an exact functor.")

Exercise 4. Suppose k is a field. Let $X = \operatorname{Spec} R$, $Y = \operatorname{Spec} S$ be affine k-schemes and $f : X \to Y$ a morphism of k-schemes.

- 1. Construct a morphism of k-scheme $\Gamma_f : X \to X \times_k Y$ such that for all field extensions k' of k, the induced map $X_k(k') \to X_k(k') \times Y_k(k')$ is given by $x \mapsto (x, f(x))$. This morphism is called the graph of f.
- Show that im (Γ_f) is closed.
 Note: This statement is in general false if X, Y are no longer affine! An example could already be constructed from Exercise 1 above.
- 3. Let $\varphi: S \to R$ be the morphism of rings corresponding to f. Show that the ideal defining im (Γ_f) is generated by the elements of the form $1 \otimes_k a \varphi(a) \otimes_k 1$ for $a \in S$.

In case of questions please send us an email or contact us before or after the seminar/problem session. Eva Viehmann: viehmann@ma.tum.de Shinan Liu: liush@ma.tum.de