Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory $_{\rm Sheet\ 2}$

Exercise 1. (a) Show that the following numbers are algebraic:

$$\frac{1}{2}, \sqrt{5}, \sqrt{17} + \sqrt{19}, e^{2\pi i/7}$$

- (b) Assuming that the polynomials you have found are irreducible, what are the conjugates of these numbers?
- (c) What are the traces and norms of these numbers?

Exercise 2. Let $K = \mathbb{Q}(\alpha)$, where $\alpha^3 = d$ for $d \in \mathbb{Z}$ not a cube. Describe the embeddings $\sigma_1, \sigma_2, \sigma_3$ of K into \mathbb{C} . Are the fields $\sigma_1(K), \sigma_2(K)$ and $\sigma_3(K)$ different?

Exercise 3. Let $f = X^3 + pX + q \in \mathbb{Z}[X]$ be irreducible and α a root of f.

- (a) Show that α^2 has minimal polynomial $X^3 + 2pX^2 + p^2X q^2$.
- (b) Show that $1, \alpha, \alpha^2, \alpha^3$ have traces 3, 0, -2p, -3q respectively and compute the trace of α^4 .
- (c) Show $d(1, \alpha, \alpha^2) = -4p^3 27q^2$