Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 5

Exercise 1. Let R be a Dedekind ring. For ideals I and J of R, write I|J for $J \subset I$ and call I and J coprime if I + J = R.

Let I, J, K be ideals of R such that I and J are coprime

(a) Show that if I|JK then I|K.

(b) Show that if I|K and J|K then IJ|K.

Exercise 2. Let p be an odd prime number.

(a) Show that -2 is a square in \mathbb{F}_p if and only if $p \equiv 1, 3$ (8).

(b) Show that $\mathbb{Z}[\sqrt{-2}]$ is Euclidean with respect to the function $N_{\mathbb{Q}(\sqrt{-2})/\mathbb{Q}}$.

(c) Show that p can be written as $x^2 + 2y^2$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1, 3$ (8).

Hint: For (a), consider a primitive eighth root of unity ζ in an algebraic closure of \mathbb{F}_p . Let $y = \zeta - \zeta^{-1}$. Then $y^2 = -2$. Now consider y^p .