Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 7

Exercise 1. Let K be a number field.

- (a) Let I be an ideal of \mathcal{O}_K satisfying $I^m = (a)$ for some $m \ge 1$ and $a \in \mathcal{O}_K$. Show that I becomes principal in the field extension $K(\sqrt[m]{a})$ of K in the sense that the ideal $I\mathcal{O}_{K(\sqrt[m]{a})}$ of $\mathcal{O}_{K(\sqrt[m]{a})}$ is principal.
- (b) Show that there exists a number field L containing K in which every ideal of \mathcal{O}_K becomes principal.

Exercise 2. The rings $\mathbb{Z}[\sqrt{6}]$ and $\mathbb{Z}[\sqrt{7}]$ are PIDs. Find generators for their ideals $(3, \sqrt{6}), (5, 4 + \sqrt{6})$ and $(2, 1 + \sqrt{7})$. *Hint:* If an ideal I of \mathcal{O}_K is generated by $a \in \mathcal{O}_K$, then N(I) = N(a).

Exercise 3 Let $d = 1 \pmod{4}$ be a square free integer not equal to 1. Show that the ring \mathbb{Z}

Exercise 3. Let $d \equiv 1 \pmod{4}$ be a square-free integer not equal to 1. Show that the ring $\mathbb{Z}[\sqrt{d}]$ is never a UFD.

Hint: Show that 2 is irreducible but not prime in this ring.