Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory $_{\rm Sheet \ 8}$

Exercise 1. Let $K = \mathbb{Q}(\sqrt[3]{5})$. Given that $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{5}]$, find the prime factorisation of the ideals (2), (3), (5) and (7) in \mathcal{O}_K . Show that all prime ideal factors which occur are principal. Using Minkowski's bound, show that \mathcal{O}_K is a PID.

Exercise 2. Show that the equation $y^2 = x^3 - 5$ has no integer solutions. *Hint:* For such x and y, show that the ideals $(y + \sqrt{-5})$ and $(y - \sqrt{-5})$ of $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}$ are coprime and then use the fact that $\mathbb{Q}(\sqrt{-5})$ has class number two.

Exercise 3. Compute the class number of $\mathbb{Q}(\sqrt{-23})$.