Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 10

Exercise 1. Let $m \ge 3$ be an integer and ζ a primitive *m*-th root of unity. Show that for (k, m) = 1, the number $\frac{1-\zeta^k}{1-\zeta}$ is a unit in $\mathcal{O}_{\mathbb{Q}(\zeta)}$.

Exercise 2. Let p be an odd prime and ζ a primitive p-root of unity.

(a) Show that $\mathbb{Z}[\zeta]^* = (\zeta)\mathbb{Z}[\zeta + \zeta^{-1}]^*$. (You may use the fact that the polynomial $1 + \ldots + X^{p-1} \in \mathbb{Z}$ is irreducible.)

(b) For p = 5, show that $\mathbb{Z}[\zeta]^* = \{\pm \zeta^k (1+\zeta)^n \mid 0 \le k < 5, n \in \mathbb{Z}\}.$

Hint: For (a), consider the automorphism τ of $\mathbb{Q}(\zeta)$ which sends ζ to ζ^{-1} . Show that $\mathbb{Z}[\zeta + \zeta^{-1}]$ is the set of fixed points of τ in $\mathbb{Z}[\zeta]$. Then show that for every $u \in \mathbb{Z}[\zeta]^*$, the image of $\tau(u)/u$ under every complex embedding of $\mathbb{Q}(\zeta)$ has norm 1.