Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 11

Exercise 1. (a) Let k be a finite field and $|\cdot|: k \to \mathbb{R}_{\geq 0}$ an absolute value on k. Show that |x| = 1 for all $x \in k$.

(b) Let k be a field of characteristic p > 0. Show that there is no archimedean absolute value on k.

Exercise 2. Let K be a field with a non-archimedean absolute value $|\cdot|$. Let $x, y \in K$ with $|x| \neq |y|$. Show that $|x + y| = \max(|x|, |y|)$.

Exercise 3. Let K be a field with a non-archimedean absolute value $|\cdot|$. Let d(x, y) = |x - y| be the associated metric.

- (a) For $a \in K$ and $r \in \mathbb{R}_{\geq 0}$ let $D(a, r) = \{x \in K \mid d(x, a) \leq r\}$ be the "closed" disc of radius r around a. Show that D(a, r) is open and closed in K.
- (b) Consider two discs D = D(a, r) and D' = D(a', r') in K. Show that either D and D' are disjoint or there exists $b \in K$ such that D = D(b, r) and D' = D(b, r').
- (c) Show that every triangle in K is isosceles: For $x, y, z \in K$ with d(x, z) < d(y, z) we have d(y, z) = d(x, y).