Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Paul Ziegler

Introduction to Algebraic Number Theory Sheet 13

Exercise 1. (a) Is there a discretely valued field which is algebraically closed? (b) Show that $\mathbb{Q}_p \neq \mathbb{Q}$ for every prime p.

Exercise 2. Let K be a complete non-archimedean field, R the valuation ring of K and $\mathfrak{m} \subset R$ the maximal ideal. For a natural number n which is not zero in R/\mathfrak{m} and $u \in R$ satisfying

 $u \equiv 1 \pmod{\mathfrak{m}},$

show that u is an n-th power in K.

- **Exercise 3.** (a) Show that $a \in \mathbb{Q}_p$ is in \mathbb{Z}_p^* if and only if the polynomial $X^n a$ has a root in \mathbb{Q}_p for infinitely many $n \ge 0$.
- (b) Show that the identity is the only field automorphism of \mathbb{Q}_p .