Lecture 10: Linear Mixed Models (Linear Models with Random Effects)

Claudia Czado

TU München

Overview

> West, Welch, and Galecki (2007) Fahrmeir, Kneib, and Lang (2007) (Kapitel 6)

- Introduction
- Likelihood Inference for Linear Mixed Models
- Parameter Estimation for known Covariance Structure
- Parameter Estimation for unknown Covariance Structure
- Confidence Intervals and Hypothesis Tests

Introduction

So far: independent response variables, but often

- Clustered Data
- response is measured for each subject
- each subject belongs to a group of subjects (cluster)

Ex.:

- math scores of student grouped by classrooms (class room forms cluster)
- birth weigths of rats grouped by litter (litter forms cluster)
- Longitudinal Data
- response is measured at several time points
- number of time points is not too large (in contrast to time series)

Ex.: sales of a product at each month in a year (12 measurements)

Fixed and Random Factors/Effects

How can we extend the linear model to allow for such dependent data structures?
fixed factor $=$ qualitative covariate (e.g. gender, agegroup)
fixed effect $=$ quantitative covariate (e.g. age)
random factor $=$ qualitative variable whose levels are randomly sampled from a population of levels being studied
Ex.: 20 supermarkets were selected and their number of cashiers were reported 10 supermarkets with 2 cashiers 5 supermarkets with 1 cashier
5 supermarkets with 5 cashiers
observed levels of random factor "number of cashiers"
random effect $=$ quantitative variable whose levels are randomly sampled from a population of levels being studied
Ex.: 20 supermarkets were selected and their size reported. These size values are random samples from the population of size values of all supermarkets.

Modeling Clustered Data

$Y_{i j}=$ response of j -th member of cluster $\mathrm{i}, i=1, \ldots, m, j=1, \ldots, n_{i}$
$m=$ number of clusters
$n_{i}=$ size of cluster i
$x_{i j}=$ covariate vector of j -th member of cluster i for fixed effects, $\in \mathbb{R}^{p}$
$\beta=$ fixed effects parameter, $\in \mathbb{R}^{p}$
$u_{i j}=$ covariate vector of j-th member of cluster i for random effects, $\in \mathbb{R}^{q}$
$\gamma_{i}=$ random effect parameter, $\in \mathbb{R}^{q}$
Model:

$$
\begin{aligned}
& Y_{i j}=\underbrace{x_{i j}^{t} \boldsymbol{\beta}}_{\text {fixed }}+\underbrace{u_{i j}^{t} \gamma_{i}}_{\text {random }}+\underbrace{\epsilon_{i j}}_{\text {random }} \\
& i=1, \ldots, m ; j=1, \ldots, n_{i}
\end{aligned}
$$

Mixed Linear Model (LMM) I

Assumptions:

$$
\begin{aligned}
& \gamma_{i} \sim N_{q}(\mathbf{0}, D), \quad D \in \mathbb{R}^{q \times q} \\
& \epsilon_{i}:=\left(\begin{array}{c}
\epsilon_{i 1} \\
\vdots \\
\epsilon_{i n_{i}}
\end{array}\right) \sim N_{n_{i}}\left(\mathbf{0}, \Sigma_{i}\right), \quad \Sigma_{i} \in \mathbb{R}^{n_{i} \times n_{i}} \\
& \gamma_{1}, \ldots, \gamma_{\boldsymbol{m}}, \boldsymbol{\epsilon}_{1}, \ldots, \boldsymbol{\epsilon}_{\boldsymbol{m}} \text { independent } \\
& D=\text { covariance matrix of random effects } \gamma_{i} \\
& \Sigma_{i}=\text { covariance matrix of error vector } \boldsymbol{\epsilon}_{\boldsymbol{i}} \text { in cluster } i
\end{aligned}
$$

Mixed Linear Model (LMM) II

Matrix Notation:

$$
X_{i}:=\left(\begin{array}{c}
\boldsymbol{x}_{i 1}^{t} \\
\vdots \\
\boldsymbol{x}_{i n_{i}}^{t}
\end{array}\right) \in \mathbb{R}^{n_{i} \times p}, \quad U_{i}:=\left(\begin{array}{c}
\boldsymbol{u}_{i 1}^{t} \\
\vdots \\
\boldsymbol{u}_{\boldsymbol{i n _ { i }}}^{t}
\end{array}\right) \in \mathbb{R}^{n_{i} \times q}, \quad \boldsymbol{Y}_{i}:=\left(\begin{array}{c}
Y_{i 1} \\
\vdots \\
Y_{i n_{i}}
\end{array}\right) \in \mathbb{R}^{n_{i}}
$$

$$
\Rightarrow \begin{cases}\boldsymbol{Y}_{i}=X_{i} \boldsymbol{\beta}+U_{i} \gamma_{i}+\epsilon_{i} & i=1, \ldots, m \\ \gamma_{i} \sim N_{q}(0, D) & \gamma_{1}, \ldots, \gamma_{m}, \epsilon_{1}, \ldots, \epsilon_{m} \text { independent } \tag{1}\\ \epsilon_{i} \sim N_{n_{i}}\left(0, \Sigma_{i}\right) & \end{cases}
$$

Modeling Longitudinal Data

$Y_{i j}=$ response of subject i at j -th measurement, $i=1, \ldots, m, j=1, \ldots, n_{i}$
$n_{i}=$ number of measurements for subject i
$m=$ number of objects
$x_{i j}=$ covariate vector of i -th subject at j-th measurement for fixed effects $\boldsymbol{\beta} \in \mathbb{R}^{p}$
$u_{i j}=$ covariate vector of i-th subject at j-th measurement for random effects $\gamma_{i} \in \mathbb{R}^{q}$
$\stackrel{y}{c \mid} \begin{array}{lll}\boldsymbol{Y}_{i} & =X_{i} \boldsymbol{\beta}+U_{i} \gamma_{i}+\epsilon_{i} & \\ \gamma_{i} & \sim N_{q}(\mathbf{0}, D) & \gamma_{1}, \ldots, \gamma_{m}, \epsilon_{1}, \ldots, \epsilon_{m} \text { independent } \\ \epsilon_{i} & \sim N_{n_{i}}\left(\mathbf{0}, \Sigma_{i}\right) & \end{array}$

Remark: The general form of the mixed linear model is the same for clustered and longitudinal observations.

Matrix Formulation of the Linear Mixed Model

$$
\begin{aligned}
& \boldsymbol{Y}:=\left(\begin{array}{c}
\boldsymbol{Y}_{\mathbf{1}} \\
\vdots \\
\boldsymbol{Y}_{\boldsymbol{m}}
\end{array}\right) \in \mathbb{R}^{n} \text {, where } n:=\sum_{i=1}^{m} n_{i} \\
& X:=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \in \mathbb{R}^{n \times p}, \quad \boldsymbol{\beta} \in \mathbb{R}^{p} \quad \mathcal{G}:=\left(\begin{array}{ccc}
D & & \\
& \ddots & \\
& & D
\end{array}\right) \in \mathbb{R}^{m q \times m q} \\
& U:=\left(\begin{array}{cccc}
U_{1} & 0_{n_{1} \times q} & \ldots & 0_{n_{1} \times q} \\
0_{n_{2} \times q} & U_{2} & & \\
\vdots & & \ddots & \\
0_{n_{m} \times q} & & & U_{m}
\end{array}\right) \in \mathbb{R}^{n \times(m \cdot q)}, \quad 0_{n_{i} \times q}:=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \\
0 & \ldots & 0
\end{array}\right) \in \mathbb{R}^{n_{i} \times q} \\
& \gamma:=\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{m}
\end{array}\right) \in \mathbb{R}^{m \cdot q}, \quad \epsilon:=\left(\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{m},
\end{array}\right) \\
& R:=\left(\begin{array}{ccc}
\Sigma_{1} & & 0 \\
& \ddots & \\
0 & & \Sigma_{m}
\end{array}\right) \in \mathbb{R}^{n \times n}
\end{aligned}
$$

Linear Mixed Model (LMM) in matrix formulation

With this, the linear mixed model (1) can be rewritten as

$$
\begin{aligned}
& \boldsymbol{Y}=X \boldsymbol{\beta}+U \boldsymbol{\gamma}+\boldsymbol{\epsilon} \\
& \text { where }\binom{\boldsymbol{\gamma}}{\boldsymbol{\epsilon}} \sim N_{m q+n}\left(\binom{\mathbf{0}}{\mathbf{0}},\left(\begin{array}{cc}
\mathcal{G} & 0_{m q \times n} \\
0_{n \times m q} & R
\end{array}\right)\right)
\end{aligned}
$$

Remarks:

- LMM (2) can be rewritten as two level hierarchical model

$$
\begin{align*}
& \boldsymbol{Y} \mid \boldsymbol{\gamma} \sim N_{n}(X \boldsymbol{\beta}+U \boldsymbol{\gamma}, R) \tag{3}\\
& \boldsymbol{\gamma} \sim N_{m q}(\mathbf{0}, R) \tag{4}
\end{align*}
$$

- Let $Y=X \beta+\epsilon^{*}$, where $\epsilon^{*}:=U \gamma+\boldsymbol{\epsilon}=\underbrace{\left(\begin{array}{ll}U \quad I_{n \times n}\end{array}\right)}_{A}\binom{\gamma}{\epsilon}$
$\stackrel{(2)}{\Rightarrow} \boldsymbol{\epsilon}^{*} \sim N_{n}(\mathbf{0}, V)$, where

$$
\begin{aligned}
\boxed{V} & =A\left(\begin{array}{cc}
\mathcal{G} & \mathbf{0} \\
\mathbf{0} & R
\end{array}\right) A^{t}=\left(\begin{array}{ll}
U & I_{n \times n}
\end{array}\right)\left(\begin{array}{cc}
\mathcal{G} & \mathbf{0} \\
\mathbf{0} & R
\end{array}\right)\binom{U^{t}}{I_{n \times n}} \\
& =\left(\begin{array}{ll}
U \mathcal{G} & R
\end{array}\right)\binom{U^{t}}{I_{n \times n}}=U \mathcal{G} U^{t}+R
\end{aligned}
$$

Therefore (2) implies $\left.\begin{array}{rl}Y & =X \boldsymbol{\beta}+\boldsymbol{\epsilon}^{*} \\ \epsilon^{*} & \sim N_{n}(\mathbf{0}, V)\end{array}\right\}$ (5) marginal model

- (2) or (3)+(4) implies (5), however (5) does not imply (3)+(4)
\Rightarrow If one is only interested in estimating $\boldsymbol{\beta}$ one can use the ordinary linear model (5)
If one is interested in estimating $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ one has to use model (3)+(4)

Likelihood Inference for LMM:
 1) Estimation of β and γ for known \mathcal{G} and R

Estimation of β : Using (5), we have as MLE or weighted LSE of $\boldsymbol{\beta}$

$$
\begin{equation*}
\tilde{\boldsymbol{\beta}}:=\left(X^{t} V^{-1} X\right)^{-1} X^{t} V^{-1} \boldsymbol{Y} \tag{6}
\end{equation*}
$$

$$
\text { Recall: } \begin{align*}
& \boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_{n}(\mathbf{0}, \Sigma), \quad \Sigma \text { known, } \quad \Sigma=\Sigma^{1 / 2}\left(\Sigma^{1 / 2}\right)^{t} \\
& \Rightarrow \Sigma^{-1 / 2} \boldsymbol{Y}=\Sigma^{-1 / 2} X \boldsymbol{\beta}+\underbrace{\sum^{-1 / 2} \boldsymbol{\epsilon}} \quad \sim N_{n}(\mathbf{0}, \underbrace{\Sigma^{-1 / 2} \Sigma \Sigma^{-1 / 2^{t}}}) \\
& \Rightarrow \text { LSE of } \boldsymbol{\beta} \text { in }(7): \quad \hat{\boldsymbol{\beta}}=\left(X^{t} \Sigma^{-1 / 2^{t}} \Sigma^{-1 / 2} X\right)^{-1} X \Sigma^{-1 / 2^{t} \Sigma^{-1 / 2} \boldsymbol{Y}} \\
&=\left(X^{t} \Sigma^{-1} X\right)^{-1} X^{t} \Sigma^{-1} \boldsymbol{Y}
\end{align*}
$$

This estimate is called the weighted LSE
Exercise: Show that (8) is the MLE in $\boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N_{n}(\mathbf{0}, \Sigma)$

Estimation of γ :

From (3) and (4) it follows that $\quad \boldsymbol{Y} \sim N_{n}(X \boldsymbol{\beta}, V) \quad \gamma \sim N_{m q}(\mathbf{0}, \mathcal{G})$

$$
\begin{align*}
\operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{\gamma}) & =\operatorname{Cov}(X \boldsymbol{\beta}+U \boldsymbol{\gamma}+\boldsymbol{\epsilon}, \boldsymbol{\gamma}) \\
& =\underbrace{\operatorname{Cov}(X \boldsymbol{\beta}, \gamma)}_{=0}+U \underbrace{\operatorname{Var}(\boldsymbol{\gamma}, \boldsymbol{\gamma})}_{\mathcal{G}}+\underbrace{\operatorname{Cov}(\boldsymbol{\epsilon}, \gamma)}_{=0}=U \mathcal{G} \\
\Rightarrow\binom{\boldsymbol{Y}}{\boldsymbol{\gamma}} & \sim N_{n+m q}\left(\binom{X \boldsymbol{\beta}}{\mathbf{0}},\left(\begin{array}{cc}
V & U \mathcal{G} \\
\mathcal{G} U^{t} & \mathcal{G}
\end{array}\right)\right) \\
\text { Recall: } \boldsymbol{X} & =\binom{\boldsymbol{Y}}{\boldsymbol{Z}} \sim N_{p}\left(\binom{\boldsymbol{\mu}_{\boldsymbol{Y}}}{\boldsymbol{\mu}_{\boldsymbol{Z}}},\left(\begin{array}{cc}
\Sigma_{Y} & \Sigma_{Y Z} \\
\Sigma Z Y & \Sigma_{Z}
\end{array}\right)\right) \\
\Rightarrow \boldsymbol{Z} \mid \boldsymbol{Y} & \sim N\left(\boldsymbol{\mu}_{Z \mid \boldsymbol{Y}}, \Sigma_{Y \mid Z}\right) \text { with } \\
\boldsymbol{\mu}_{Z \mid \boldsymbol{Y}} & =\boldsymbol{\mu}_{\boldsymbol{Z}}+\Sigma_{Z Y} \Sigma_{Y}^{-1}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{\boldsymbol{Y}}\right), \Sigma_{Z \mid Y}=\Sigma_{Z}-\Sigma_{Z Y} \Sigma_{Y}^{-1} \Sigma_{Y Z} \\
\hline E(\gamma \mid \boldsymbol{Y}) & =\mathbf{0}+\mathcal{G} U^{t} V^{-10}(\boldsymbol{Y}-X \boldsymbol{\beta})=\mathcal{G} U^{t} V^{-1}(\boldsymbol{Y}-X \boldsymbol{\beta}) \tag{9}
\end{align*}
$$

is the best linear unbiased predictor of γ (BLUP)
Therefore $\tilde{\gamma}:=\mathcal{G} U^{t} V^{-1}(\boldsymbol{Y}-X \tilde{\boldsymbol{\beta}})$ is the empirical BLUP (EBLUP)

Joint maximization of log likelihood of $\left(\boldsymbol{Y}^{t}, \gamma^{t}\right)^{t}$

 with respect to $(\boldsymbol{\beta}, \gamma)$$$
\begin{aligned}
& f(\boldsymbol{y}, \gamma)=f(\boldsymbol{y} \mid \gamma) \cdot f(\gamma) \\
& \stackrel{(3)+(4)}{\propto} \exp \left\{-\frac{1}{2}(\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma})^{t} R^{-1}(\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma})\right\} \\
& \exp \left\{-\frac{1}{2} \gamma^{t} \mathcal{G}^{-1} \gamma\right\} \\
& \Rightarrow \ln f(\boldsymbol{y}, \gamma) \quad=\quad-\frac{1}{2}(\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma})^{t} R^{-1}(\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma}) \\
& -\frac{1}{2} \underbrace{\boldsymbol{\gamma}^{t} \mathcal{G}^{-1} \boldsymbol{\gamma}}_{\text {penalty term for } \boldsymbol{\gamma}}+\text { constants ind. of }(\boldsymbol{\beta}, \boldsymbol{\gamma})
\end{aligned}
$$

So it is enough to minimize

$$
\begin{aligned}
Q(\boldsymbol{\beta}, \boldsymbol{\gamma}):= & (\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma})^{t} R^{-1}(\boldsymbol{y}-X \boldsymbol{\beta}-U \boldsymbol{\gamma})-\boldsymbol{\gamma}^{t} \mathcal{G}^{-1} \boldsymbol{\gamma} \\
= & \boldsymbol{\gamma}^{t} R^{-1} \boldsymbol{\gamma}-2 \boldsymbol{\beta}^{t} X^{t} R^{-1} \boldsymbol{y}+2 \boldsymbol{\beta}^{t} X^{t} R^{-1} U \boldsymbol{\gamma}-2 \boldsymbol{\gamma}^{t} U^{t} R^{-1} \boldsymbol{y} \\
& +\boldsymbol{\beta}^{t} X^{t} R^{-1} X \boldsymbol{\beta}+\gamma^{t} U^{t} R^{-1} U \gamma+\gamma^{t} \mathcal{G}^{-1} \gamma
\end{aligned}
$$

Recall:

$$
\begin{aligned}
f(\boldsymbol{\alpha}) & :=\boldsymbol{\alpha}^{t} \boldsymbol{b}=\sum_{j=1}^{n} \alpha_{j} b_{j} \\
\frac{\partial}{\partial \alpha_{i}} f(\boldsymbol{\alpha}) & =b_{j}, \\
\frac{\partial}{\partial \alpha} f(\boldsymbol{\alpha}) & =b \\
g(\boldsymbol{\alpha}) & :=\boldsymbol{\alpha}^{t} A \boldsymbol{\alpha}=\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} a_{i j} \\
\frac{\partial}{\partial \alpha_{i}} g(\boldsymbol{\alpha}) & =2 \alpha_{i} a_{i i}+\sum_{j=1, j \neq i}^{n} \alpha_{j} a_{i j}+\sum_{j=1, j \neq i}^{n} \alpha_{j} a_{j i}=2 \sum_{j=1}^{n} \alpha_{j} a_{i j}=2 A_{i}^{t} \boldsymbol{\alpha} \\
\frac{\partial}{\partial \alpha} g(\boldsymbol{\alpha}) & =2\left(\begin{array}{c}
A_{1}^{t} \\
\vdots \\
A_{n}^{t}
\end{array}\right)=2 A \boldsymbol{\alpha} \quad A_{i}^{t} \text { is ith row of A }
\end{aligned}
$$

Mixed Model Equation

$$
\begin{align*}
& \frac{\partial}{\partial \boldsymbol{\beta}} Q(\boldsymbol{\beta}, \boldsymbol{\gamma})=-2 X^{t} R^{-1} \boldsymbol{y}+2 X^{t} R^{-1} U \boldsymbol{\gamma}+2 X^{t} R^{-1} X \boldsymbol{\beta} \stackrel{\text { Set }}{=} 0 \\
& \frac{\partial}{\partial \gamma} Q(\boldsymbol{\beta}, \boldsymbol{\gamma})=-2 U^{t} R^{-1} X \boldsymbol{\beta}-2 U^{t} R^{-1} \boldsymbol{y}+2 U^{t} R^{-1} U \boldsymbol{\gamma}+2 \mathcal{G}^{-1} \gamma \stackrel{\text { Set }}{=} 0 \\
& \Leftrightarrow \quad X^{t} R^{-1} X \widetilde{\boldsymbol{\beta}}+X^{t} R^{-1} U \widetilde{\boldsymbol{\gamma}}=X^{t} R^{-1} \boldsymbol{y} \\
& \quad U^{t} R^{-1} X \widetilde{\boldsymbol{\beta}}+\left(U^{t} R^{-1} U+\mathcal{G}^{-1}\right) \widetilde{\boldsymbol{\gamma}}=U^{t} R^{-1} \boldsymbol{y} \\
& \Leftrightarrow \quad\left(\begin{array}{cc}
X^{t} R^{-1} X & X^{t} R^{-1} U \\
U^{t} R^{-1} U & U^{t} R^{-1} R+\mathcal{G}^{-1}
\end{array}\right)\binom{\widetilde{\boldsymbol{\beta}}}{\widetilde{\gamma}}=\binom{X^{t} R^{-1} \boldsymbol{y}}{U^{t} R^{-1} \boldsymbol{y}} \tag{10}
\end{align*}
$$

Exercise: Show that $\widetilde{\boldsymbol{\beta}}, \widetilde{\gamma}$ defined by (8) and (9) respectively solve (10).

Define $C:=\left(\begin{array}{ll}X & U\end{array}\right), B:=\left(\begin{array}{cc}0 & 0 \\ 0 & \mathcal{G}^{-1}\end{array}\right)$

$$
\begin{aligned}
\Rightarrow C^{t} R^{-1} C & =\binom{X^{t}}{U^{t}} R^{-1}\left(\begin{array}{ll}
X & U
\end{array}\right)=\binom{X^{t} R^{-1}}{U^{t} R^{-1}}\left(\begin{array}{ll}
X & U
\end{array}\right) \\
& =\left(\begin{array}{ll}
X^{t} R^{-1} X & X^{t} R^{-1} U \\
U^{t} R^{-1} X & U^{t} R^{-1} U
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow(10) \quad \Leftrightarrow \quad\left(C^{t} R^{-1} C+B\right)\binom{\widetilde{\boldsymbol{\beta}}}{\widetilde{\gamma}}=C^{t} R^{-1} \boldsymbol{y}
$$

$$
\Leftrightarrow\binom{\widetilde{\boldsymbol{\beta}}}{\widetilde{\gamma}}=\left(C^{t} R^{-1} C+B\right)^{-1} C^{t} R^{-1} \boldsymbol{y}
$$

2) Estimation for unknown covariance structure

We assume now in the marginal model (5)

$$
\boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}^{*}, \boldsymbol{\epsilon}^{*} \sim N_{n}(\mathbf{0}, V)
$$

with $V=U \mathcal{G} U^{t}+R$, that \mathcal{G} and R are only known up to the variance parameter ϑ, i.e. we write

$$
V(\boldsymbol{\vartheta})=U \mathcal{G}(\boldsymbol{\vartheta}) U^{t}+R(\boldsymbol{\vartheta})
$$

ML Estimation in extended marginal model

$\boldsymbol{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}^{*}, \boldsymbol{\epsilon}^{*} \sim N_{n}(\mathbf{0}, V(\boldsymbol{\vartheta}))$ with $V(\boldsymbol{\vartheta})=U \mathcal{G}(\boldsymbol{\vartheta}) U^{t}+R(\boldsymbol{\vartheta})$
loglikelihood for $(\boldsymbol{\beta}, \boldsymbol{\vartheta})$:
$l(\boldsymbol{\beta}, \boldsymbol{\vartheta})=-\frac{1}{2}\left\{\ln |V(\boldsymbol{\vartheta})|+(\boldsymbol{y}-X \boldsymbol{\beta})^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \boldsymbol{\beta})\right\}+$ const. ind. of $\boldsymbol{\beta}, \boldsymbol{\vartheta}$
If we maximize (11) for fixed $\boldsymbol{\vartheta}$ with regard to $\boldsymbol{\beta}$, we get

$$
\widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}):=\left(X^{t} V(\boldsymbol{\vartheta})^{-1} X\right)^{-1} X^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}
$$

Then the profile log likelihood is

$$
\begin{aligned}
l_{p}(\boldsymbol{\vartheta}) & :=l(\widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}), \boldsymbol{\vartheta}) \\
& =-\frac{1}{2}\left\{\ln |V(\boldsymbol{\vartheta})|+(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))\right\}
\end{aligned}
$$

Maximizing $l_{p}(\boldsymbol{\vartheta})$ wrt to $\boldsymbol{\vartheta}$ gives MLE $\hat{\boldsymbol{\vartheta}}_{M L} . \hat{\boldsymbol{\vartheta}}_{M L}$ is however biased; this is why one uses often restricted ML estimation (REML)

Restricted ML Estimation in extended marginal model

Here we use for the estimation of ϑ the marginal log likelihood:

$$
\begin{gathered}
l_{R}(\boldsymbol{\vartheta}):=\ln \left(\int L(\boldsymbol{\beta}, \boldsymbol{\vartheta}) \mathrm{d} \boldsymbol{\beta}\right) \\
\int L(\boldsymbol{\beta}, \boldsymbol{\vartheta}) \mathrm{d} \boldsymbol{\beta}=\int \frac{1}{(2 \pi)^{n / 2}}|V(\boldsymbol{\vartheta})|^{-1 / 2}+\exp \left\{-\frac{1}{2}(\boldsymbol{y}-X \boldsymbol{\beta})^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \boldsymbol{\beta})\right\} \mathrm{d} \boldsymbol{\beta}
\end{gathered}
$$

Consider:

$$
\begin{aligned}
& (\boldsymbol{y}-X \boldsymbol{\beta})^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \boldsymbol{\beta})=\boldsymbol{\beta}^{t} \underbrace{X^{t} V(\boldsymbol{\vartheta})^{-1} X}_{A(\boldsymbol{\vartheta})} \boldsymbol{\beta}-2 \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} X \boldsymbol{\beta}+\boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y} \\
& =(\boldsymbol{\beta}-B(\boldsymbol{\vartheta}) \boldsymbol{y})^{t} A(\boldsymbol{\vartheta})(\boldsymbol{\beta}-B(\boldsymbol{\vartheta}) \boldsymbol{y})+\boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1}-\boldsymbol{y}^{\boldsymbol{t}} B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta}) \boldsymbol{y}
\end{aligned}
$$

where $B(\boldsymbol{\vartheta}):=A(\boldsymbol{\vartheta})^{-1} X^{t} V(\boldsymbol{\vartheta})^{-1}$
(Note that $\left.B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta})=V(\boldsymbol{\vartheta})^{-1} X A(\boldsymbol{\vartheta})^{-1} A(\boldsymbol{\vartheta})=V(\boldsymbol{\vartheta})^{-1} X\right)$

Therefore we have

$$
\begin{align*}
& \int L(\boldsymbol{\beta}, \boldsymbol{\vartheta}) \mathrm{d} \boldsymbol{\beta}=\frac{|V(\boldsymbol{\vartheta})|^{-1 / 2}}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{y}^{\boldsymbol{t}}\left[V(\boldsymbol{\vartheta})^{-1}+B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta})\right] \boldsymbol{y}\right\}\right. \\
& \cdot \underbrace{\int \exp \left\{-\frac{1}{2}(\boldsymbol{\beta}-B(\boldsymbol{\vartheta}) \boldsymbol{y})^{t} A(\boldsymbol{\vartheta})(\boldsymbol{\beta}-B(\boldsymbol{\vartheta}) \boldsymbol{y})\right\} \mathrm{d} \boldsymbol{\beta}}_{\frac{(2 \pi)^{p / 2}}{\left|A(\boldsymbol{\vartheta})^{-1}\right|^{-1 / 2}}} \tag{12}
\end{align*}
$$

Now

$$
\begin{aligned}
& (\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta})) \\
= & \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}-2 \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta})+\widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta})^{t} \underbrace{X^{t} V(\boldsymbol{\vartheta})^{-1} X}_{A(\boldsymbol{\vartheta})} \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}) \\
= & \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}-2 \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} X B(\boldsymbol{\vartheta}) \boldsymbol{y}+\boldsymbol{y}^{t} B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta}) \boldsymbol{y} \\
= & \boldsymbol{y}^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}-\boldsymbol{y}^{t} B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta}) \boldsymbol{y}
\end{aligned}
$$

Here we used:

$$
\widetilde{\boldsymbol{\beta}}=\left(X^{t} V(\boldsymbol{\vartheta})^{-1} X\right)^{-1} X^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}=A(\boldsymbol{\vartheta})^{-1} X^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{y}=B(\boldsymbol{\vartheta}) \boldsymbol{y}
$$

and

$$
B(\boldsymbol{\vartheta})^{t} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta})=V(\boldsymbol{\vartheta})^{-1} X A(\boldsymbol{\vartheta})^{-1} A(\boldsymbol{\vartheta}) B(\boldsymbol{\vartheta})=V(\boldsymbol{\vartheta})^{-1} X B(\boldsymbol{\vartheta})
$$

Therefore we can rewrite (12) as

$$
\begin{aligned}
\int L(\boldsymbol{\beta}, \boldsymbol{\vartheta}) \mathrm{d} \boldsymbol{\beta}= & \frac{\mid V\left(\left.\boldsymbol{\vartheta}\right|^{-1 / 2}\right.}{(2 \pi)^{n / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))\right\} \\
& \frac{(2 \pi)^{n / 2}}{\left|A(\boldsymbol{\vartheta})^{-1}\right|^{-1 / 2}} \quad\left|A(\boldsymbol{\vartheta})^{-1}\right|=\frac{1}{|A|} \\
\Rightarrow l_{R}(\boldsymbol{\theta})= & \ln \left(\int L(\boldsymbol{\beta}, \boldsymbol{\vartheta}) \mathrm{d} \boldsymbol{\beta}\right) \\
= & -\frac{1}{2}\left\{\ln |V(\boldsymbol{\vartheta})|+(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))\right\} \\
& -\frac{1}{2} \ln |A(\boldsymbol{\vartheta})|+C \\
= & l_{p}(\boldsymbol{\vartheta})-\frac{1}{2} \ln |A(\boldsymbol{\vartheta})|+C
\end{aligned}
$$

Therefore the restricted ML (REML) of ϑ is given by $\hat{\vartheta}_{\text {REML }}$ which maximizes

$$
l_{R}(\boldsymbol{\vartheta})=l_{p}(\boldsymbol{\vartheta})-\frac{1}{2} \ln \left|X^{t} V(\boldsymbol{\vartheta})^{-1} X\right|
$$

Summary: Estimation in LMM with unknown cov.

For the linear mixed model

$$
\begin{aligned}
& \boldsymbol{Y}=X \boldsymbol{\beta}+U \boldsymbol{\gamma}+\boldsymbol{\epsilon},\binom{\boldsymbol{\gamma}}{\boldsymbol{\epsilon}} \sim N_{m q+n}\left(\binom{\mathbf{0}}{\mathbf{0}},\left(\begin{array}{cc}
\mathcal{G}(\boldsymbol{\vartheta}) & 0_{m q \times n} \\
0_{n \times m q} & R(\boldsymbol{\vartheta})
\end{array}\right)\right) \\
& \text { with } V(\boldsymbol{\vartheta})=U \mathcal{G}(\boldsymbol{\vartheta}) U^{t}+R(\boldsymbol{\vartheta})
\end{aligned}
$$

the covariance parameter vector ϑ is estimated by either $\hat{\vartheta}_{M L}$ which maximizes

$$
\begin{aligned}
& l_{p}(\boldsymbol{\vartheta})=-\frac{1}{2}\left\{\ln |V(\boldsymbol{\vartheta})|+(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))^{t} V(\boldsymbol{\vartheta})^{-1}(\boldsymbol{y}-X \widetilde{\boldsymbol{\beta}}(\boldsymbol{\vartheta}))\right\} \\
& \text { where } \widetilde{\boldsymbol{\beta}}=\left(X^{t} V(\boldsymbol{\vartheta})^{-1} X\right)^{-1} X^{t} V(\boldsymbol{\vartheta})^{-1} \boldsymbol{Y}
\end{aligned}
$$

or by
$\hat{\boldsymbol{\vartheta}}_{R E M L}$ which maximizes $\quad l_{R}(\boldsymbol{\vartheta})=l_{p}(\boldsymbol{\vartheta})-\frac{1}{2} \ln \left|X^{t} V(\boldsymbol{\vartheta})^{-1} X\right|$
The fixed effects $\boldsymbol{\beta}$ and random effects γ are estimated by

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}=\left(X^{t} \widehat{V}^{-1} X\right)^{-1} X^{t} \widehat{V}^{-1} \boldsymbol{Y} \\
& \widehat{\gamma}=\widehat{\mathcal{G}} U^{t} \widehat{V}^{-1}(\boldsymbol{Y}-X \widehat{\boldsymbol{\beta}}) \quad \text { where } \widehat{V}=V\left(\widehat{\boldsymbol{\vartheta}}_{M L}\right) \text { or } V\left(\widehat{\boldsymbol{\vartheta}}_{R E M L}\right)
\end{aligned}
$$

Special Case

(Dependence on ϑ is ignored to ease notation)

$$
\begin{aligned}
& \mathcal{G}=\left(\begin{array}{ccc}
D & & \\
& \ddots & \\
& & D
\end{array}\right), U=\left(\begin{array}{lll}
U_{1} & & \\
& \ddots & \\
& & U_{m}
\end{array}\right), R=\left(\begin{array}{lll}
\Sigma_{1} & & \\
& \ddots & \\
& & \Sigma_{m}
\end{array}\right), \\
& X=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right), \boldsymbol{Y}=\left(\begin{array}{c}
\boldsymbol{Y}_{1} \\
\vdots \\
\boldsymbol{Y}_{m}
\end{array}\right) \\
& \Rightarrow V=U \mathcal{G} U^{t}+R=\left(\begin{array}{ccc}
U_{1} D U_{1}^{t}+\Sigma_{1} & & 0 \\
& \ddots & \\
0 & & U_{m} D U_{m}^{t}+\Sigma_{m}
\end{array}\right) \\
& =\left(\begin{array}{lll}
V_{1} & & \\
& \ddots & \\
& & V_{m}
\end{array}\right) \quad \text { where } V_{i}:=U_{i} D U_{i}^{t}+\Sigma_{i}
\end{aligned}
$$

Define

$$
\widehat{V}_{i}:=U_{i} D(\widehat{\boldsymbol{\vartheta}}) U_{i}^{t}+\Sigma_{i}(\widehat{\boldsymbol{\vartheta}}), \text { where } \widehat{\boldsymbol{\vartheta}}=\widehat{\boldsymbol{\vartheta}}_{M L} \text { or } \widehat{\boldsymbol{\vartheta}}_{\boldsymbol{R E M L}}
$$

$$
\begin{aligned}
\Rightarrow \widehat{\boldsymbol{\beta}} & =\left(X^{t} \widehat{V}^{-1} X\right)^{-1} X^{t} \widehat{V}^{-1} \boldsymbol{Y} \\
& \left.=\sum_{i=1}^{m} X_{i}^{t} \widehat{V}_{i}^{-1} X_{i}\right)^{-1}\left(\sum_{i=1}^{m} X_{i}^{t} \widehat{V}_{i}^{-1} \boldsymbol{Y}_{i}\right)
\end{aligned}
$$

and
$\widehat{\gamma}=\widehat{\mathcal{G}} U^{t} \widehat{V}^{-1}(\boldsymbol{Y}-X \widehat{\boldsymbol{\beta}})$ has components

$$
\widehat{\gamma}_{i}=D(\widehat{\gamma}) U_{i} \widehat{V}_{i}^{-1}\left(\boldsymbol{y}_{i}-X_{i} \widehat{\boldsymbol{\beta}}\right)
$$

3) Confidence intervals and hypothesis tests

Since $\boldsymbol{Y} \sim N(X \boldsymbol{\beta}, V(\boldsymbol{\vartheta}))$ holds, an approximation to the covariance of $\widehat{\boldsymbol{\beta}}=\left(X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) X\right)^{-1} X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) \boldsymbol{Y}$ is given by

$$
A(\widehat{\boldsymbol{\vartheta}}):=\left(X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) X\right)^{-1}
$$

Note: here one assumes that $V(\widehat{\boldsymbol{\vartheta}})$ is fixed and does not depend on \boldsymbol{Y}. Therefore $\widehat{\sigma}_{j}:=\left(X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) X\right)_{j j}^{-1}$ are considered as estimates of $\operatorname{Var}\left(\widehat{\beta}_{j}\right)$.
Therefore

$$
\widehat{\beta}_{j} \pm z_{1-\alpha / 2} \sqrt{\left(X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) X\right)_{j j}^{-1}}
$$

gives an approximate $100(1-\alpha) \% \mathrm{CI}$ for β_{j}.
It is expected that $\left(X^{t} V^{-1}(\widehat{\boldsymbol{\vartheta}}) X\right)_{j j}^{-1}$ underestimates $\operatorname{Var}\left(\widehat{\beta}_{j}\right)$ since the variation in $\widehat{\vartheta}$ is not taken into account.
A full Bayesian analysis using MCMC methods is preferable to these approximations.

Under the assumption that $\widehat{\boldsymbol{\beta}}$ is asymptotically normal with mean β and covariance matrix $A(\vartheta)$, then the usal hypothesis tests can be done; i.e. for

- $H_{0}: \beta_{j}=0$ versus $H_{1}: \beta_{j} \neq 0$

$$
\text { Reject } H_{0} \Leftrightarrow\left|t_{j}\right|=\left|\frac{\widehat{\beta}_{j}}{\widehat{\sigma}_{j}}\right|>z_{1-\alpha / 2}
$$

- $H_{0}: C \boldsymbol{\beta}=\boldsymbol{d}$ versus $H_{1}: C \boldsymbol{\beta} \neq \boldsymbol{d} \quad \operatorname{rank}(C)=r$

Reject $H_{0} \Leftrightarrow W:=(C \widehat{\boldsymbol{\beta}}-\boldsymbol{d})^{t}\left(C^{t} A(\widehat{\boldsymbol{\vartheta}}) C\right)^{-1}(C \widehat{\boldsymbol{\beta}}-\boldsymbol{d})>\chi_{1-\alpha, r}^{2}$ (Wald-Test)
or
Reject $H_{0} \Leftrightarrow-2\left[l(\widehat{\boldsymbol{\beta}}, \widehat{\gamma})-l\left(\widehat{\boldsymbol{\beta}}_{\boldsymbol{R}}, \widehat{\gamma}_{\boldsymbol{R}}\right)\right]>\chi_{1-\alpha, r}^{2}$ where $\widehat{\boldsymbol{\beta}}, \widehat{\gamma}$ estimates in unrestricted model $\widehat{\boldsymbol{\beta}}_{\boldsymbol{R}}, \widehat{\gamma}_{\boldsymbol{R}}$ estimates in restricted model $(C \boldsymbol{\beta}=\boldsymbol{d})$ (Likelihood Ratio Test)

References

Fahrmeir, L., T. Kneib, and S. Lang (2007). Regression: Modelle, Methoden und Anwendungen. Berlin: Springer-Verlag.

West, B., K. E. Welch, and A. T. Galecki (2007). Linear Mixed Models: a practical guide using statistical software. Boca Raton: ChapmanHall/CRC.

