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1 Introduction

We are interested in Monte Carlo simulation of high dimensional joint distributions in which
dependencies may be important. Most current simulation programs generate correlated sam-
ples by transforming to a Gaussian distribution (Iman et al. (1981)), or by a "distribution-
free” transformation of the sample (Iman and Conover (1982)). We do not assume that the
joint distribution is a transform of the joint normal. Because of the high dimensionality in
combination with a lack of data and/or a lack of knowledge a complete charaterization of
the joint distributions is often not available or very hard to give. Even specifying the entire
covariance matrix may be impracticable. We are therefore interested in convenient methods
for partially specifying a joint distribution, where “convenient” means both convenient for
the analyst modelling a given problem, and convenient for the computer in performing Monte
Carlo simulation. A partial specification fixes certain properties. Most important for the
present study is the rank correlation tree specification for n variables. It specifies:

1. marginal distributions for each of the n variables,
2. a tree of dependence relations i.e. an undirected acyclic graph on n points,

3. values in [—1, 1] for each of the edges in the tree, such a value specifies the rank corre-
lation coefficient between the variables connected via the edge.

A rank correlation tree is shown in Figure 1. More generally a bivariate tree specification
associates arbitrary restrictions on the bivariate distribution of two connected variables.

We say that a distribution on IR™ satisfies or realizes a bivariate tree specification if it has
one-dimensional marginal distributions and bivariate marginal distributions that agree with
the specifications. A bivariate tree specification is called consistent if it is realized by at least
one multivariate probability distribution. If a bivariate tree specification is consistent (often




Figure 1: A rank correlation tree specification with 7 variables. Specified are all the one
dimensional marginal distributions Fi,...,F7 and the rank correlations ¢ for the variables
that are neighbours, 1€ {312, t34, 45, I56, t57}.

a non-trivial question) then generally, there will be many different multivariate distributions
that satisfy the specifications. We show in this paper that the distribution having maximal
entropy within the class of all distributions that realize a given consistent bivariate tree
specification has many desirable properties. We make use of the following Theorem proven
in Meeuwissen (1993).

Theorem 1 Given two invertible, continuous one-dimensional marginal distributions F; and
Fy and a set of feasible moment restrictions on the joint distribution, there exists a unique
bivariate distribution F having mazimum entropy in the class of joint distributions with the
prescribed one-dimensional marginals Fy and F, and satisfying the restrictions.

In this context, maximal entropy must be interpreted as minimal relative information with
respect to the product distribution of F; and F,. A similar theorem with only a finite number
of moment restrictions and no fixed marginal distributions was already proven by Kullback
(1959). Note that the specification of marginal distributions is not equivalent with specifying
a finite number of moments. Examples of moment restrictions are e.g. cross-product moments,
quantile constraints, rank correlation and expectations of functions of marginals. Further it
was shown in Meeuwissen (1993) that bivariate maximum entropy distributions satisfying
marginal distributions and a (rank) correlation constraint can be conveniently approximated
and simulated. We summarize some results of this paper informally. In this paper we assume
that all distributions have densities.

1. A rank correlation tree specification is always consistent.

2. Every consistent bivariate tree specification has a realization that factors into bivariate
and univariate distributions; i.e. it has a realization with the property that two sets of
variables on one path are independent conditional on any variable on the path in the
tree which separates these sets. Two variables not connected by a path are independent.
Such distributions are called Markov tree dependent.

3. Given a consistent bivariate tree specification for n variables, where Theorem 1 is appli-
cable to the partially specified bivariate distributions, there is a unique joint distribution



Figure 2: An influence diagram of three variables; X and Y “influence” Z.

having maximal entropy in the class of distributions realizing this bivariate tree specifi-
cation. Moreover this distribution has the Markov tree dependence property mentioned
in 2. Its bivariate distributions are determined by the unique bivariate maximal entropy
distributions.

4. Given a completely characterized distribution F on n variables, there is a consistent
bivariate tree specification on n+1 variables such that variables 1, ..., n are conditionally
independent given variable n + 1, and the n-dimensional marginal distribution of the
first n variables equals F.

Result 3 implies that finding the “least informative” multivariate probability distribution
complying with the bivariate tree specification can be simplified to the calculation of least
informative bivariate distributions.

The Markov tree structure of the partial specification describes a sampling strategy in
the obvious way: Pick a “root” arbitrarily, hang the tree from its root, and sample each
variable conditional on the variable hanging above it. The whole distribution is simulated by
conditionalizing two dimensional distributions.

The trees appearing in rank correlation tree specifications and bivariate tree specifications
are closely related to influence diagrams, Oliver & Smith (1990). Influence diagrams however,
are described by directed acyclic graphs, where the direction of an arc in the graph is taken
to describe the flow of “influence” (for a discussion of the differences between directed and
undirected graphs in specifying a probability model, see Speed, 1990). In the present context,
the reason for studying undirected rather than directed graphs may be explained with the
help of the influence diagram in Figure 2. According to the prevailing interpretation Figure 2
says that X and Y are independent. To simulate the distribution Fxy,z, Z has to be sam-
pled conditional on both X and Y; i.e. this distribution does not factor into two- and one
dimensional distributions. More generally, an influence diagram does not guarantee a lower
dimensional factorization of the joint distribution. For purposes of simulation, it is precisely
this property which we wish to have.

The paper is structured as follows. In Section 2 the definitions and preliminaries of
the concept of bivariate tree specifications and tree dependence are introduced. Then in
Section 3 we prove results 1, 2 and 4. In Section 4 the entropy result 3 is proven. In Section 5
total positivity and regression dependence properties of the maximal entropy multivariate
distributions are studied. Section 6 concludes the paper with some remarks on possible
generalizations. '



2 Definitions and Preliminaries

When we speak of random variables or random vectors, a probability space will always be
assumed but seldom specified. Usually we consider continuous invertible probability distribu-
tions F on R™ equipped with the Borel sigma algebra B. The marginal distribution functions
of F are denoted with F; (1 < i < n) and the bivariate marginal distribution functions with

Fj (1<i#j<n).

Definition 1 (relative information)
If f and g are densities with f absolutely continuous with respect to g then the relative infor-

mation I(f|g) of density f with respect to g is

1l0) = [ fe)og( 2 o

Properties of I(f|g) are that I(f|g) > 0 and I(f|g) = 0 & f = g. I(f|g) can be interpreted
as measuring the degree of “uniformness” of f (with respect to g). See e.g. Kullback (1959)
and Guiagu (1977).

Definition 2 (rank correlation)
The rank correlation p,(X,Y) of two random variables X and Y with a joint probability

distribution Fx y and marginal probability distributions Fx and Fy respectively, is given by
pr(X,Y) = p(Fx(X), Fy(Y)) -

Here p(U,V) denotes the ordinary product moment correlation given by

p(U,V) = cov{U,V}/y/var{U}var{V}.

The rank correlation of two random variables is the ordinary product moment correlation of
two transformations of these random variables. It is sometimes called grade correlation. An
extensive discussion can be found in Kruskal (1958). The probability distribution functions
Fx and Fy transform X and Y respectively to uniform(0,1) variables U and V (if Fx and
Fy are continuous). Calculation of the integral

B{Fx(XOF ()} = [ [ Fx(e)Rr(u)fxy (2, y)dzdy

is the basic step in the calculation of p.(X,Y) as we know that a uniform(0,1) variable U has
mean 1/2 and variance 1/12. The rank-correlation has some important advantages over the

ordinary product-moment correlation:

e Independent of the marginal distributions Fx and Fy it can take any value in the interval
[—1,1] whereas the product-moment correlation can only take values in a sub-interval
I C [-1,1] where I depends on the marginal distributions Fx and [y,

e it is invariant under monotone transformations of X and Y.

These properties make the rank correlation a suitable measure for developing canonical meth-
ods and techniques that are independent of marginal probability distributions.




Definition 3 (rank correlation tree specification)
(F, T, t) is an n-dimensional rank correlation tree specification if:

1. F = (F,...,F,) is a vector of completely characterized one-dimensional distribution
functions,

2. T is an acyclic undirected graph with nodes N = {1,...,n} and edges E, where an edge
is an unordered pair {i,j} with i and j € N,

3. The rank correlations of the bivariate distributions F;;, {i,j} € E, are specified by
t = {ti;t; € [-1,1], {i,j} € E, t;j = tji, tii = 1}.

Definition 4 (bivarate tree specification)
(F,T,B) is an n-dimensional bivariate tree specification if:

1. F = (F,...,F,) is a vector of completely characterized one-dimensional distribution
functions,

2. T is an acyclic undirected graph with nodes N = {1,...,n} and edges E where an edge
is an unordered pair {i,j} with i and j € N,

3. B restricts the bivariate distributions F;;, {i,j} € E to belong to a non-empty subclass
Fp(ij) of the class of distribution functions with marginals F; and Fj.

Definition 5 (tree dependence)

(i) A multivariate probability distribution G on IR™ satisfies, or realizes, a bivariate tree
specification (F,T, B) if the marginal distributions G; of G equal F; (1 < i < n) and if for
{i,7} € E the bivariate distributions Gy; of G are members of the subclass Fp(;j).-

(ii) G has tree dependence described by T if {i,k1},...,{km,j} € E implies that X; and X;
are conditionally indepedent given kq, for each £, taken singly, 1 < £ < m; and if X; and X;
are independent if there are no such ky,...,ky (i, € N).

(iii) G has Markov tree dependence described by T if for all i € N, the following property
holds: Let J and K be disjoint subsets of N not containing i such that for all j € J,k € K,
7 and k are connected by a path containing i with i between j and k; and let X7 ={X;:1 €
J}, Xk ={X;:1€ K}; then X and Xk are independent conditional on X;.

Markov tree dependence entails tree dependence, but not conversely; the following example
shows that tree dependence is not equivalent with Markov tree dependence. Let X;, X, X3
be independent Bernoulli variables, taking values in {0,1}, and Let X, = 1 if X; + X2 + X3
is even and = 0 otherwise. Then X; and X4 are independent given X3, and are independent
given X3, but X; and {X3, X4} are not independent given X,. For trees in which all paths
have length at most three, tree dependence and Markov tree dependence coincide.

Note that tree dependence says nothing about marginals or correlations; rather it de-
scribes a conditional independence structure. Satisfying a rank correlation tree specification
does not imply tree dependence. Indeed, every distribution on IR™ satisfies rank correlation
tree specifications, but not every distribution exhibits conditional independence relations. It
suffices to consider three variables, no two of which are independent conditional on the third.
Finally, we remark that the existence of an edge {7,j} € E does not imply that variables
X; and X; are not independent. Indeed, if £;; = 0, then the maximal entropy realization of
(F,T,t) will make X; and X; independent.



3 Existence of Markov Tree Dependent Distributions

In this section we prove some basic properties of Markov tree dependent random variables.
Theorem 2 is similar to results known from the study of influence diagrams. Theorem 3
shows that correlation tree specifications have Markov tree dependent realizations. Further
Theorem 4 shows that any n-dimensional joint probability distribution can be constructed as
an n-dimensional marginal distribution from a Markov tree dependent (n + 1)-dimensional
distribution.

Theorem 2 Let (F,T, B) be a consistent n-dimensional bivariate tree specification that spec-
ifies the marginal densities f;, 1 < i < n and the bivariate densities fj, {1,7} € E the set of
edges of T. Then there is a unique density g on R™ with marginals fi,..., fa; and bivariate
marginals f;; for {i,j} € E such that g has Markov tree dependence described by T. The
density g is given by
[ jer fii(zi 2;5)
P e L) = - - . 1

g( 1y ‘n) HieN(ﬁ(Ii))d(tJ_l ) ( )

where d(i) denotes the degree of node i; i.e. the number of neighbours of i in the tree T.

Proof
The proof is by induction on n. If n = 1 the theorem is trivial. Without loss of generality

assume that T is connected. Fix i € N with degree at least 2 and let D; denote the set of
neighbours of i: D; = {j|j € N,{i,j} € E}. Now consider for each j € D; the subtrees T}
with set of nodes N; = {i,j} U {k|k € N, there is a path from k to j and this path does not -
include i} and set of edges E; = {{k,¢}|{k,£} € E, k,£ € N;}. Thus Ujep,E; = E and for
all j,k € Dz E; N Ex = 0 and N; N Ni = {4} because T is a tree. Further let d;(k) denote
the degree of node k in 7T}; i.e. d;(i) = 1 and d;(k) = d(k) for all other k € N;. Now let g; be
the unique distribution satisfying the theorem for the subtree T} for all j € D;. By induction
we have for Nj = {£1,£2,...,4s(j)}

Gilgssie P H(E,—,z,-]eEj- ffiyfj(:cfi?wfj)
ACT R yrera byl = : T o
FACTIR RS () HhGNj(feh(xfh))d"(zh) 1

This expression is equivalent to

(e 4B\ (i) o ts (%40 34;)
g.(xf!xf 1---,3‘ : —_‘f‘j,‘zi,x‘ L J sJ 7 3
AR ] 2 En{:)) J( J) HheN_,-\{;‘}(fEh [th))d(fh)-l

Denote the conditional density of g; given X; as g;;; i.e. g;; = g;/fi. Since the sets N; \ {1},
j € D; are disjunct we may write

#l51ensn) = filan) 1] wlens-—70,)
JED;

which equals (1). To verify that g has the Markov tree dependence property, note that the
above equaton follows from (1) for any i € N of degree at least two. Let i,J, K be as in the
definition of Markov tree dependence. For j € T}, k € T} , there is a path from k to j through
7 which does not contain ¢. Therefore

INT; £b=KnT;=0.
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Figure 3: A bivariate tree specification on (Y, Z, £).

Put J; =JﬂTj,Kj = K NTj;j € D;; then

g(zrzkle) = [ gi(z) II gri(zx,)) = 9(zalzi)g(zkles)).
J:Ji#0 k:K;#0
To verify that g is unique, let § be another density satisfying the theorem, let z; be a node
with degree 1, and let {1,2} be the edge attached to z;. Let I = N \ {1,2}. Then

9(3711 .. °"rn) = g(z;]zg)g(zg)g(xﬂo:z),

with a similar equation for §. By the induction hypothese, and by the equality of the first
and second dimensional marginals, it follows that

BB gw o B 2 QU v )
a

Remark, Because of the general applicability of the induction argument of the proof of
Theorem 2 it is in many cases sufficient to consider bivariate tree specifications of only three
variables (Y, Z, L), see Figure 3. The following theorem states that a rank correlation tree
specification is always consistent.

Theorem 3 Let (F,T,t) be an n-dimensional rank correlation tree specification, then there
exists a joint probability distribution G realizing (F,T,t) with G tree dependent.

Proof

A standard construction using Fréchet bounds, see e.g. Cuadras (1992), realizes bivariate
distributions with uniform(0,1) marginals and any (rank) correlation value ¢t € [-1,1]. Trans-
formation of the uniform distributions to the required marginals F; preserves the rank corre-
lations ¢ (1 < ¢ < n). Now consistent bivariate distributions F}; with prescribed marginals

and rank correlations are constructed, we can apply Theorem 2.
a

Theorem 3 would not hold if we replaced rank correlations with product moment correlations
in Definition 3. Given arbitrary continuous and invertible one-dimensional distributions and
an arbitrary p € [—1, 1], there need not exist a joint distribution having these one-dimensional
distributions as marginals with product moment correlation p.

Now we show that any random vector X with multivariate probability distribution func-
tion Fy can be obtained as a n-dimensional marginal distribution of a realization of a bivari-
ate tree specification of an enlarged vector (X, £).The extra variable £ is also called a latent
variable.



Theorem 4 Given a vector of random variables X = (Xi,...,X,) with joint probability
distribution Fx(z), there ezists an (n + 1)-dimensional bivariate tree specification (G, T, B)

on the random variables (Z,...,2Z,, L) with a Markov tree dependent realization Gz such
that [ Gz c(z,£) dl = Fx(z).
Proof

Let M : R™ — R be a bijective measurable map from IR™ to IR. For the existence of such a
map we refer to any standard textbook of measure theory, (eg Halmos (1950) p. 153). Define
L = M(X). Now conditional upon £ all X; are deterministically known and hence they are
in trivially independent. All paths in this tree have length three, hence the tree dependence
is Markov. a

4 Entropy of Markov Tree Dependent Distributions

From Theorem 2 it follows immediately that for the Markov tree dependent density g given
by the theorem:

G| TI )= D Ifislfifi) -
iEN {ij}eE
If the bivariate tree specification does not completely specify the bivariate marginals f; ;, {¢,5} €
E, then more than one Markov tree dependent realization may be possible. In this case rel-
ative information with respect to the product distribution [];cx fi is minimized, within the
class of Markov tree dependent realizations, by minimizing each bivariate relative information
I(fi;|fifi), {4, 5} € E.

In this section we show that Markov tree dependent distributions are optimal realizations
of bivariate tree specifications in a maximal entropy sense (i.e. minimal relative information).
In other words, we show that a maximal entropy realization of (consistent) bivariate tree
specification has Markov tree dependence. This follows from a very general result stating that
maximal entropy distributions, relative to independent distributions, subject to overlapping
marginal constraints, are conditionally independent given the overlap.

To prove the theorem, we first formulate three lemmas. We assume in this analysis that
the distributions have densities and that the absolute continuity condition is always fulfilled.
Throughout this section, Z, Y, and X are finite dimensional random vectors having no
components in common.

Lemma 5
Let gx v.z(z,y,2) be a density with marginal densities gx(z), gv(y) and gz(z); and let

=gxy(z,y)9zx(z,2)

i} Zz b4
QX,Y,Z( 'Y ){ =gX‘Z(x,z)gy|X(~Ta y) .

Then §x v,z satisfies
gx =9x >, gy =9y , 9z=9z2 ,
gxy =9gxy ,» 9x,2=9x,2
and Y and Z are conditionally independent given X under §.



Proof
The proof is a straigthforward calculation. O

Lemma 6 Letgx y(z,y) be a probability density with marginals gx(z) and gy (y) respectively,
and let px () be a density. Let gx|y and gy|x denote the conditional densities of X givenY
and of Y given X respectively. Then

f gy (¥)I(g9xvlpx) dy > I(9x|px)
and equality holds if and only if X and Y are independent under g; i.e. gxy(z,y) = gx(z).

Proof
By definition

[ ov@Iaxiipx) dy 2 I(oxlpx)

is equivalent to

J [ o@axiv(z, 910 gx“’(( ’)y) dady> [ gx(2)log gXE ;

or to

ffgx.y(x,y)bggmy(w,y) dzdy > /fgx.y(x,y)loggx(w) dzdy .

This can be rewritten as

gxy(z,v)
/_/gx,v(x,y)lc’g——gx(z) dzdy > 0

axy(z,y)
z,y)log ——""dzdy > 0.
fng.Y( Y) ggx(x)gy(y Y

This last equation equals I(gx y|gxgy ). It always holds and it holds with equality if and only
if gx.v = gx gy, (Kullback, 1959). This quantity is also called mutual information.

or as

a

Lemma 7
Let gx v z(z,y,2) and gxy,z(z,y,2) be two probability densities defined as in Lemma 5, then

1) I(gxyzloxgrez) 2 I(3xyzlgx9v9z) ,
i)  I(Gxyzlgxgrvez) = I(gxyloxgy) + I(g9x,zl9x9z) -

and equality holds in (2) if and only if g = §.




Proof
By definition we have

gX,Y.Z(:Ca Y, z)
9x(z)gy(v)9z(z)

I(gx,v,zl9x9v 92) = / / f 9x,v,z(z,y,z)log dedydz

which by conditionalization is equivalent with

/ / / g9xv,z(z,y,7)log gx’;f(ﬁiz(lj)‘;;;?’ 2 dzdydz

and with

/fgx y(z,y)lo ggi‘}{(;);}:?g) dzdy

-1-/// 9xy,z(z,y,z)log Q'ZIXY((J?)% ?) dzdydz .

Now rewrite this as follows
I(gxyloxgy)+ /9)&’(3)fQY|X($=y)I(gZ|X,YIQZ) dydz ,
and apply Lemma 6 to obtain for this expression the lower bound
Igxyloxer) + [ 9x(@)(9zxl9z) do

which can be rewritten as

9x(z)g9zx(z, 2)
9x(z)gz(z)

I(gx,ylgng)+ff9x(m)gzix(wsz)10g dzdz
or as
I(gxylgxgy) + I(gx,zl9x9z) -

This lower bound is obtained if and only if g is such that Z and Y are independent given X
under g (lemma 6). This is indeed the case for § by lemma 5. m]

We may now formulate

Theorem 8 Let gxy be the unique probability density with marginals fx and fy that mini-
mizes I(gx,v|fx fy) within the class of distributions Fp(x,y). Let similarly gx,z be the unique
probability density with marginals fx and fz that minimizes I(gx z|fx fz) within the class
of distributions Fg(x,z)- Then gxyy,z = gxygzix is the unique probability density with
marginals fx, fy and fz that minimizes I(gx,v,z|fx fv fz) with the marginals gxy and gx,z
members of Fg(xy) and Fp(x, z) respectively.

Proof

Let fxy,z be the joint probability density with marginals fx, fr and fz that minimizes
I(fxvz|fx fr fz) given the constraints B(X,Y) and B(X,Z). Then by Lemma 5 fxv,z :=
fxy fz|x satisfies the same constraints B By Lemma 7 we have

I(fxvz\fxfrfz) > I(fxy.z|fx fr fz) -

10




But by the minimality of fx.y,z We also have .
I(fxy,z| fx fr fz) 2 I(fx 2| fx fr fz) -
Hence by Lemma 7 fxyz = fxv,z, and
I(fxyz|fx fv fz) = I(fxy|fx fr) + I(fx.2| fx fz)-
But
I(fxy\fx fr) + I(fx.2|fx fz) 2 Hgxy|fx fr) + I(9x,2|fx fz) = 1(9x,v,2| fx fr fz)

By the uniqueness of gx z and gx,y, this entails gx v,z = fxv,z-

Corollary 9 Let (F, T, B) be a consistent bivariate tree specification. For each (i,7) € E, let
there be a unique density g(z;, ;) which has mazimal entropy relative to the product measure
fif; under the constraint B(ij). Then ( 1) is the unique density with mazimal entropy relative
to the product density [I;cn fi under constraints B(i,j),{i,j} € E.

Proof :
Using the notation of Theorem 2, the proof is by induction on n. The densities g; are the

unique maximum entropy densities for the subtrees T}, j € D;, by the induction hypothesis.
If g;; = gj/ fi, then the density g = f; [ljep; 95)i» has maximal entropy by Theorem 8 under
the constraints implied by T; for all j € D;. These are the same constraints as (F,T, B).

Hence, ¢ is a maximal entropy realization of (F, T, B). :
a

If B(i,7) fully specifies g(z;,z;) for {i,7} € E, then the above corollary says that there is
a unique maximal entropy density given (F,T, B) and this density is Markov tree dependent.

5 Tree Dependent Random Variables and Total Positivity

The following theorems describe the ‘smoothness’ of tree dependent multivariate distributions.
This ‘smoothness’ is related to the maximal entropy property of these distributions.

Definition 6 (total positivity of degree n)
Let n € {2,3,4,...}. A density fxy(z,y) is called totally positive of degree n (TPn) if
for all z; < 29 < ... < T, and for all y1 < y2 < ... < yn, the matric M with elements

m;; = fxy(zi,y;) satisfies
det(M) > 0 . 2)

If the same equation holds with the > sign reversed, fxy is called totally negative of degree
n (TNnj, see Karlin (1968) and Marshall & Olkin (1979).

11




Total positivity of degree n of a distribution may be associated with ‘smoothness’ of the
distribution. See Hutchinson & Lai (1990) for a brief overview of concepts of smoothness.
Total positivity is an important, very strong property of joint probability distributions. Most
of the concepts of dependence are implied by total positivity of degree 2. Note that if X,Y are
independent, then fx y is TP2. Also the joint Gaussian distribution with positive correlation
coefficient is TP2 as shown by Tong (1990).

Theorem 10 Let L be a random variable with compact support and strictly positive density
fz(z). If both the joint distribution of the random variables £ and Y and the joint distribution
of the random variables L and Z are TP2, and Y and Z are independent conditional on L,
then the joint distribution of the random vector (Y, Z) is TP2.

Proof. Assume y; < ¥z, z1 < 22 and let fz y(¢4,y) and fz,z(£,z) be TP2. We show:
fr,.z(y1,21) fr,z(¥2, 22) = fr,z(91, 22) fr,z(32,21) 2 0 .

Conditionalize on £ to get the integral

]/ [fY,ZiC(eI:ylszl)fY,Z|C(f2a?9'2:32)
~ fr.ze (b, 11, 22) fr, 212 3, 21)| fe(a) fe(be) dlrdls .

In this expression one can exchange the names of the integration variables £; and £;. Thus
obtain the symmetric expression

%f/{[fy,z;c(fl»ylazl)fy,zm(fz,yz,22) —fy,zlc(flaylazz)fy,zm(fzayz?zl)]

+ [f}’,zm(fz’ Y1, 21) fr,z1c (41, Y25 22) — fr,z1c(€2, 91, 22) fr, 21 (€1, V25 21)] }
fo(81) fc(€e) dbydey .

Use the conditional independence on £ to rewrite this as

%//{[fﬂc(fza:'h)fzw(fx,21)fY|c(f2,yz)fzw(fz,zz)
— fy1c(1, 91) fz1c(41, 22) fy (€2, y2) f 210 (L2, 21)}
+ [fym(fz,m)fzm(fz,'h)fwc(fl,yz)fzw(fhzz)

~ fyie(le, 11) f212(82 22) fr (81, 92) fz1c (1, 21) ] }
fe(l) fo(£2) dbydes .

Now write fy|z(£,¥) = fr,y(¢,y)/fc(£) and write the expression between braces as a product
in the following way

%ff (fey(Cr,n)fey(€2,y2) = foy (b2, v1) fry (€1, 42)]
(fe,z(81,21) fe,z(€2, 22) — fr,z(1, 22) fr,z(£2, 21)]

1
@) et
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Now by assumption the integrand is a product of nonnegative factors for £; < £3; and if
41 > £, both factors between brackets change sign. Hence the expression is nonnegative. O

Note: A similar, somewhat less general theorem can be found in Holland & Rosenbaum

(1986).

Regression dependence is one of the concepts of dependence that is implied by total positivity
of degree 2. Various definitions of regression dependence exist. They are not all entirely
equivalent. We use here the following definition which is slightly weaker than other definitions,
Lehmann (1963).

Definition 7 (Regression Dependence)

A random variable Y is positively (negatively) regression dependent with respect to a random
variable X if the conditional ezpectation E{Y|X = z}, also called the regression of Y with
respect to X, is non-decreasing (non-increasing) in z.

If the joint probability density of fx,y is TP2, then is Y positively regression dependent with
respect to X and is X positively regression dependent with respect to Y, Hutchinson & Lai
(1990). When considering models that are monotone increasing/decreasing in the variables
the following properties can be proven.

Theorem 11 Let each of the components X;, 1 < i < n, of the stochastic vector X € R"
be positively regression dependent with respect to a stochastic variable £ and let each pair
(Xi, X;) be independent conditional on L, 1 < 4,5 <n, ¢ # j. If the function M : R" — IR
is non-decreasing in each of its arguments then is Y = M(X) positively regression dependent
with respect to L.

Proof. We show that
E{Y|L=1¢}

is non-decreasing in £, if each of the random variables X is positively regression dependent
with respect to £ and M is non-decreasing.

B{Y|L =&} = E{M(X;,.:-; Xn)IL =1}
which is equivalent to
/---fM(zl,...,mn)th____xnw(:tl,...,:.cn|£) dey -+ -da, .
Because of the conditional independence (on £) of X, ..., X, we can rewrite this as

[+ [ M@, o) fraie@lt) - fraie(@alt) dor -+ don

or as

/. - {f M(z1,.. .,zn)fxﬂc(xﬂf)dz;} o fxoc(@nll)dTn

and M is non-decreasing in all of its arguments. o
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6 Concluding Remarks

The introduced bivariate tree specifications are a formalism to handle the situation of "par-
tially known” joint probability distributions that arise in Monte Carlo simulation studies.
The fact that these specifications have Markov tree dependent realizations gives a direct
sampling scheme. Moreover we have shown that these Markov tree dependent realizations
have a maximal entropy property and are very "smooth”. This smoothness can be used to
reduce the calculational burden in uncertainty analysis situations as has been shown in e.g.
Cooke, Meeuwissen & Preyssl (1991), Meeuwissen (1993) and Meeuwissen & Cooke (1994).
Algorithms for the generation of samples of tree dependent random variables have been im-
plemented in computer programs by Cooke, Keane & Meeuwissen (1990) van Dorp (1991)
and Cooke (1995).

We have also given a theoretical construction that shows that any n-dimensional joint
probability distribution can be obtained as a marginal distribution of a tree dependent re-
alization of an (n + 1)-dimensional bivariate tree specification. At the moment this idea of
enlargement, used in Theorem 4, is being worked out to generalize the concept of rank corre-
lation tree specifications to rank correlation graph specifications. In these latter specifications
the graphs specifying the bivariate dependence relations may contain cycles. It seems that
this generalization can be obtained by adding the restriction that the bivariate distributions
have (rank) linear regression.
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