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Introduction

• The availability of non-financial data, including environmental,

social, and governance (ESG) data has skyrocketed, and has

gained great interest from academics and practitioners.

• ESG scores are based on several criteria given by a rating

institution (Bhattacharya and Sharma, 2019). The rating

institutions use quantitative and qualitative methods to assign

an ESG score to a company (Berg and Lange, 2020).



EIKON Thomson Reuters ESG Scores

Figure 1: Aggregate ESG Scores



Previous Works

• It has been suggested that companies with better ESG scores

enjoy better financial and market performance (Aboud and

Diab, 2019).

• However, adding ESG criteria to an equity portfolio may not

necessarily yield any additional returns (Breedt et al., 2019).

• No-consensus has yet been found on the link to corporate

financial performance, as the results differ depending on the

data used and the design of the study (Junkus and Berry,

2015; Shafer and Szado, 2018; Friede, 2019; Dorfleitner et al.,

2020)



Motivation

• While more than 2000 empirical studies have been done

analysing ESG scores and financial performance, little has

been done to understand the dependence structure and

associated risks.

• Regulatory authorities, such as the European Banking

Authority (EBA), have acknowledged that ESG scores can

contribute to risk.

• This research aims to question whether ESG score can allow to

capture (tail) dependence and (tail) risk to a certain degree.
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Figure 2: 95% VaR with ESG Grade A (75< score ≤ 100 ), B (50 < score ≤ 75 ), C (25 <
score ≤ 50 ), D (0 < score ≤ 25)



Dependence Modelling

A copula C is a cumulative distribution function (cdf) with

uniform marginals on the [0, 1].

Sklar’s theorem (1959) states that if F is a continuous

d-dimensional distribution function for X = (X1, . . . ,Xd)> with a

univariate cdf Fp(xp) of a continuous random variable Xp for

p = 1, . . . , d with its realizations xp, the joint distribution function

F can be written as

F (x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)). (1)

The corresponding density is

f (x1, . . . , xd) = c(F1(x1), . . . ,Fd(xd)) ·
d∏

p=1

fp(xp), (2)

where C is some appropriate d-dimensional copula with copula

density c.



Multivariate Copula Model

However, there are some drawbacks to multivariate copula models.

These include the inflexibility in larger dimensions and the

restriction of similar dependence structures between the variable

pairs.

To overcome these issue and as we are interested in separate

multivariate component modeling, we fit vine copula models

instead.



Vine Copula Model

Figure 3: Example of a 6-dimensional regular vine with edge labels.

Itau1 Copulas BB Copulas
Properties t F N C J G I BB1 BB7 BB8

Positive Dependence X X X X X X - X X X
Negative Dependence X X X - - - - - - -
Tail Asymmetry - - - X X X - X X X
Lower Tail Dependence X - - X - - - X X -
Upper Tail Dependence X - - - X X - X X X

Table 1: Parametric copula families and their properties without rotations and reflections. Notation of copula
families:t = Student’s t, F = Frank, N = Gaussian, C = Clayton, J = Joe, G = Gumbel, I = Independence, BB1 =
Clayton- Gumbel, BB7 = Joe-Clayton, BB8= Extended Joe

1 Copula families for which the parameter estimation by Kendall’s τ inversion is available without rotations



Data

• Daily log returns of 334 companies j (constituents the S&P

500)

• Time frame: y = 2006− 2018

• Trading days: t = 1, ..., 3271

• Time periods q : 2006-2010, 2011-2015, 2016-2018

• Sectors: S = 1, . . . , 10

• Yearly ESG Scores (ESGS
j ,y )

• S&P 500 Sector indices (I S,qt )

• S&P 500 market capitalization weights (by 1.01.2015) to

compute the ESG class indices IS ,qt,k



Sectors

Sector (S) Count (j)
Basic Materials 19
Consumer Cyclicals 50
Consumer Non-Cyclicals 31
Energy 16
Financials 49
Healthcare 35
Industrials 41
Real Estate 21
Technology 51
Utilities 23

Table 2: Number of Assets j per Sector (S)



ESG Scores - Trend
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Figure 4: Boxplot ESG Scores



ESG Class Indices - Clustering

We cluster data companies according to their mean ESG score over

the specific interval.

We have ∀j ,S,q:

RS,q
j =


A, if ESG

S,q
j ∈ [75, 100],

B, if ESG
S,q
j ∈ [50, 75),

C, if ESG
S,q
j ∈ [25, 50),

D, otherwise.

(3)

This is necessary to compute our ESG class indices (IS ,qt,k )



Two-Step Inference for Margins

• Financial data are strongly dependent on past values and not uniformly
distributed on [0, 1]d , therefore, a two-step inference for margins (IFM)
approach is followed.

• We propose a parametric marginal model and estimate the margins first,
we then use the estimated marginal distributions to transform the data on
the copula scale by defining the pseudo-copula data.

• A GARCH(1,1) with Student t innovations is fitted to each financial
return series, Sector index, and ESG Class Indices, allowing for
time-varying volatility and volatility clustering.

• Using the cumulative distribution function of the standardized Student t
distribution, we determine the pseudo-copula data using the probability
integral transform (PIT).



R-vine Copula ESG Risk Model - Tree 1



R-vine Copula ESG Risk Model - Tree 2



ESG class dependence indicator DS ,q
j (τ)

For each asset j with its ESG class k in period q within each sector

S . We use the associated Kendall’s τ and its estimate τ̂ as a

dependence measure.

D
S,q
j (τ) =

|τ̂
j,I

S,q
k

|
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j,I
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(4)

It accounts for the conditional dependencies of the asset j to other

assets oS,qj1
, ..., oS ,qjl−1

, where jl is the number of assets which occur

in the conditioning set, when j is in the conditioned set with the

fitted vine in sector S and period q.



ESG class lower tail dependence indicator DS,q
j (λ)

Similarly, we can also define the following ESG class lower tail

dependence indicator DS ,q
j (λ) for each asset j with its ESG class k

within each sector S and period q.

D
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(5)

The lower tail dependence coefficient is also non-zero when the

fitted bivariate copula class is Student’s t, Clayton, 180° Joe, 180°
Gumbel, BB1, BB7, or 180° BB8 in our model. For other bivariate

copula families, we have zero lower tail dependence coefficient.Here

λ is denotes the lower tail dependence coefficient, with estimate λ̂.



Energy Sector - Tree 1 - 2006-2010



Energy Sector - Tree 2 - 2006-2010



ESG Class Dependence Indicator for each time interval
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ESG Class Lower Dependence Indicator for each time interval
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Mean ESG Class Dependence Indicator

Time Interval 2006-2010 2011-2015 2016-2018
Sector | ESG class A B C D A B C D A B C D
Basic Materials - 0.30 0.29 - 0.25 0.35 0.27 - 0.23 0.28 0.25 -
Consumer Cyclicals 0.25 0.22 0.18 0.18 0.16 0.21 0.15 0.15 0.16 0.15 0.17 0.21
Consumer Non-Cyclicals 0.22 0.23 0.23 - 0.22 0.26 0.19 - 0.16 0.20 0.16 -
Energy - 0.29 0.25 0.30 0.24 0.31 0.30 - 0.23 0.28 0.33 -
Financials - 0.25 0.24 - 0.17 0.23 0.21 - 0.19 0.21 0.18 -
Healthcare 0.25 0.23 0.22 0.24 0.26 0.24 0.28 - 0.22 0.22 0.22 -
Industrials - 0.22 0.25 0.22 0.19 0.25 0.25 0.21 0.17 0.23 0.19 -
Real Estate - - 0.38 0.24 0.32 0.27 0.26 - 0.23 0.26 0.22 -
Technology 0.19 0.17 0.23 0.19 0.17 0.16 0.22 - 0.18 0.15 0.15 -
Utility - 0.32 0.30 - - 0.32 0.24 - 0.33 0.35 0.26 -

Table 3: D̄S,q
k (τ) for each Sector and ESG Class - Largest values in red

D̄S ,q
k (τ) =

1

nS ,qk

∑
j ′∈[1,nS ]

j ′:RS,q

j′ =k

DS,q
j ′ (τ), ∀S ,q,k , (6)



Mean ESG Class Lower Dependence Indicator

Time Interval 2006-2010 2011-2015 2016-2018
Sector | ESG class A B C D A B C D A B C D
Basic Materials - 0.82 0.68 - 0.86 0.95 0.93 - 0.79 0.75 0.74 -
Consumer Cyclicals 0.84 0.63 0.51 0.48 0.72 0.66 0.55 0.60 0.39 0.33 0.36 0.72
Consumer Non-Cyclicals 0.66 0.54 0.60 - 0.80 0.79 0.75 - 0.51 0.70 0.53 -
Energy - 0.78 0.73 0.90 0.65 0.79 0.78 - 0.77 0.56 0.81 -
Financials - 0.69 0.64 - 0.64 0.76 0.67 - 0.60 0.61 0.54 -
Healthcare 0.86 0.64 0.61 0.65 0.80 0.68 0.81 - 0.51 0.54 0.48 -
Industrials - 0.69 0.69 0.69 0.61 0.76 0.81 0.83 0.49 0.64 0.56 -
Real Estate - - 0.85 0.80 0.94 0.78 0.74 - 0.40 0.69 0.67 -
Technology 0.75 0.55 0.61 0.60 0.58 0.59 0.63 - 0.58 0.46 0.57 -
Utility - 0.81 0.84 - - 0.89 0.85 - 0.78 0.83 0.72 -

Table 4: D̄S,q
k (λ) for each Sector and ESG Class- Lowest values in blue

D̄S ,q
k (λ) =

1

nS ,qk

∑
j ′∈[1,nS ]

j ′:RS,q

j′ =k

DS,q
j ′ (λ), ∀S ,q,k , (7)



Conclusion

• By introducing an indicator to capture overall dependence

among assets with the similar ESG scores and across sector,

we are capable to quantify dependence.

• We see that such dependence is not negligible, with values

often between 0.2 and 0.4, which tend to increase during

crisis.

• Still, as the overall ESG dependence vary between 0.2 and 0.4,

the idiosyncratic component for each stock as well as some

other effects could still play a relevant role.

• We show that tail dependence tends to be higher during crisis.



Conclusion

• The understanding and estimation of such dependence is of

utmost importance for setting up adequate risk management

and mitigation tools as well as building portfolios, ideally also

ESG diversified and resilient to crises.

• Current popular ESG inclusion approaches that focus on

picking only assets in the highest ESG rating classes could

have indeed possibly benefit in the past from better VaR

values but such behavior is not clear for the most recent

interval, where ESG classes are overlapping.



Conclusion

• In fact, picking assets with the highest ESG scores does not

lead to better VaR values necessarily and could instead results

in applying too much pressure on a specific set of assets,

without a clear benefit.

• The constant trend in improving ESG scores might be a factor

behind the lack of VaR differentiation between the classes A,

B, and C in the last time interval, joint to the fact that such

ESG scores are yet not definitive.

• Still, we notice that ESG class D assets tend to exhibit poorer

VaR values than other ESG classes, suggesting that ESG

disclosure might also have some indirect and positive effect on

the company risk management.
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Data Notation

We introduce the mathematical indices, data sets and their

notations used in the paper.



ESG
S ,q

j

Mean ESG score of asset j in sector S and period q (ESG
S ,q
j )

ESG
S ,q
j =

1

|Pq|
∑
y∈Pq

ESGS
y ,j for ∀j ,S ,q, (8)

where P1 = [2006, 2010], P2 = [2011, 2015], P3 = [2016, 2018],

and |Pq| denotes the number of years in Pq.



RS ,q
j

ESG class of asset j in sector S and period q (RS ,q
j ) We have

∀j ,S,q:

RS ,q
j =


A, if ESG

S ,q
j ∈ [75, 100],

B, if ESG
S ,q
j ∈ [50, 75),

C, if ESG
S ,q
j ∈ [25, 50),

D, otherwise.

(9)



(IS ,qt,k )

Values of ESG class k in sector S and period q at trading day t

(IS ,qt,k )

IS ,qt,k =
∑

j ′∈[1,nS ]

j ′:RS,q

j′ =k

αS ,q
j ′ · Y

S ,q
t,j ′,k for ∀S ,q,k and t ∈ Tq, (10)

where T1 = [1, 1260], T2 = [1261, 2517], T3[2518, 3271].



Two-Step Inference for Margins

As financial data are strongly dependent on past values and not

uniformly distributed on [0, 1]d , which is the necessary input for a

copula, a two-step inference for margins (IFM) approach is

followed. This approach as been investigated by Joe (2005). We

follow a parametric marginal model and estimate the margins first,

we then use the estimated marginal distributions to transform the

data on the copula scale by defining the pseudo-copula data. This

allows us to remove the marginal time dependence by utilizing

standard univariate time series models and then proceed with

standardized residuals obtained from these models. We fit a

generalized autoregressive conditional heteroskedasticity (GARCH)

model with Student t innovations to our data, allowing for

time-varying volatility and volatility clustering.



GARCH Model



GARCH Model continued

As an input of a R-vine model in sector S and period q, we have a

data matrix X S ,q defined in the Data Notation Section. Overall,

we have |S | × |q| = 10× 3 = 30 vine copula risk models.

In sector S and period q, we fit a GARCH(1,1) models with

appropriate error distribution for a marginal time series, XS,q
d , and

estimate the parameters of the following model:

ε
S,q
d,t

= σ
S,q
t,d
· zt (σ

S,q
d,t

)2 = γ0 + γ1 · (ε
S,q
t−1,d

)2 + β1 · (σ
S,q
t−1,d

)2 (11)

where (zt)t>1 is a sequence of normal random independent and

identically distributed random variables satisfying the standard

assumptions E [zt ] = 0 and var [zt ] = 1 and follows a Student’s t

distribution.



GARCH Model continued

Then using the cumulative distribution function of the standardized

Student’s t distribution, we determine the pseudo-copula data as

probability integral transformation (PIT), i.e.

ûS ,qt,d := F̂d

(
X S ,q
t,d

σ̂St,d
; ν̂Sd

)
. (12)

Following this two-step approach allows us to convert data to the

copula scale, which can be used for estimation of the copula

parameter of the chosen bivariate copula family.



Number of Assets for each ESG class per Sector and interval

Time Interval 2006-2010 2011-2015 2016-2018

Sector | ESG class A B C D A B C D A B C D

Basic Materials 1 7 11 0 3 11 5 0 5 10 4 0

Consumer Cyclicals 2 15 23 10 4 25 15 6 9 27 12 2

Consumer Non-Cyclicals 6 11 13 1 9 17 4 1 9 18 4 0

Energy 1 6 6 3 3 9 3 1 4 9 3 0

Financials 1 17 30 1 3 24 22 0 6 13 30 0

Healthcare 2 13 16 3 6 18 9 1 13 16 5 0

Industrials 1 15 20 5 3 22 14 2 7 24 10 0

Real Estate 1 1 14 4 2 7 10 1 6 10 4 0

Technology 6 16 21 8 7 25 18 1 10 32 9 0

Utilities 0 13 10 0 0 15 8 0 2 18 3 0

Table 5: Number of Assets for each ESG class per sector S and time period q



Two R-vine Copula ESG Risk Model

Two R-vine models for each sector S and time period q

2 · 10 · 3 = 60

The first R-vine model is fitted allowing only for the itau copula

families and their rotations and reflections, while in the second

R-vine model we allow for all parametric copula families and their

rotations and reflections (all copula families are presented in Table

6).

Itau1 Copulas BB Copulas
Properties t F N C J G I BB1 BB7 BB8

Positive Dependence X X X X X X - X X X
Negative Dependence X X X - - - - - - -
Tail Asymmetry - - - X X X - X X X
Lower Tail Dependence X - - X - - - X X -
Upper Tail Dependence X - - - X X - X X X

Table 6: Parametric copula families and their properties without rotations and reflections. Notation of copula families:t =
Student’s t, F = Frank, N = Gaussian, C = Clayton, J = Joe, G = Gumbel, I = Independence, BB1 = Clayton- Gumbel, BB7 =
Joe-Clayton, BB8= Extended Joe

1Copula families for which the parameter estimation by Kendall’s τ inversion is

available without rotations



Which model?

To choose our optimal model we use the Bayesian Information

Criteria (BIC) as it tends to select a parsimonious model that

reasonably approximates the density (Schwarz and Others, 1978).

Considering BIC values of the model fits indicate that itau bivariate

copula family set is preferred in our data, except for the Real

Estate sector in period q1 = 2006− 2010 and q2 = 2011− 2015.

Therefore, we allowed for BB copula fits in these two cases. Since

the number of parameters differ in the bivariate copula families

that we considered, we used the parsimonious BIC correction in the

Vuong test to favor more parsimonious models.



Fitted Copula Families - Itau

Sector BM.a C. Cyc.b N.Cyc.c Ene.d Fin.e H.Care f Ind.g R. Est. h Tech.i Uti.j

2006-2010 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
Student’s t 18 44 30 16 50 33 44 20 50 23
Clayton 0 0 1 0 0 2 0 1 0 0
Frank 1 6 1 0 1 1 0 0 4 2
Gaussian 3 0 2 4 2 2 0 0 0 0
Gumbel 0 4 1 0 0 0 1 0 1 0
Independence 0 0 0 0 0 0 0 3 0 0
Joe 0 0 0 0 0 0 0 0 0 0
2011-2015 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
Student’s t 19 43 31 15 50 34 41 20 50 23
Clayton 1 0 0 0 0 2 0 0 0 2
Frank 0 7 0 1 0 0 2 0 3 0
Gaussian 0 0 4 1 2 1 2 0 2 0
Gumbel 0 4 0 0 0 0 0 0 0 0
Independence 2 0 0 3 0 0 0 1 0 0
Joe 0 0 0 0 0 1 0 3 0 0
2016-2018 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
Student’s t 18 41 29 15 50 33 41 18 50 23
Clayton 2 0 0 1 0 3 0 1 0 3
Frank 0 10 2 1 0 0 3 0 1 0
Gaussian 1 1 2 1 1 1 0 2 1 0
Gumbel 0 2 1 1 1 0 0 0 2 0
Independence 1 0 0 0 0 0 0 2 0 0
Joe 0 0 0 0 0 0 0 0 0 0

Table 7: Bivariate itau copula families and independence copula fitted for Tree

1 (T1). To simplify, no difference in the counts are made based on rotations

and reflections. These are available on request by the authors. (a Basic

Materials, b Consumer Cyclicals, c Consumer Non-Cyclicals, d Energy, e

Financials, f Healthcare, g Industrials, h Real Estate, I Technology, J Utility)



Energy Sector Model Fit

Comparison of the itau and parametric R-vine models.

In the following the BIC are compared from three different vine

models for the Energy sector and time period. In every model the

preselect feature of rvinecopulib is not activated. The output of all

additional sectors and time intervals are available from the authors

upon request. See Table 6 for copula family abbreviations.

loglik BIC

Itau 2006-2010 32393.89 -63074.45

Par 2006-2010 32363.61 -62899.67

Itau 2011-2015 30135.86 -58637.47

Par 2011-2015 29643.34 -57495.43

Itau 2016-2018 11526.09 -21727.11

Par. 2016-2018 11005.10 -20671.87

Table 8: Model Fit - Energy

Interval Statistic Schwarz Statistic Schwarz p-value
2006-2010 2.012 5.806 6.383e-09
2011-2015 4.470 5.182 2.194e-07
2016-2018 6.210 6.289 3.190e-10

Table 9: Vuong Test - Energy
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