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Abstract

Joint modeling of multiple health related random variables is essential to

develop an understanding for the public health consequences of an aging pop-

ulation. This is particularly true for patients suffering from multiple chronic

diseases. The contribution is to introduce a novel model for multivariate data

where some response variables are discrete and some are continuous. It is based

on pair copula constructions (PCCs) and has two major advantages over ex-

isting methodology. First, expressing the joint dependence structure in terms

of bivariate copulas leads to a computationally advantageous expression for the

likelihood function. This makes maximum likelihood estimation feasible for

large multidimensional data sets. Second, different and possibly asymmetric

bivariate (conditional) marginal distributions are allowed which is necessary to

accurately describe the limiting behavior of conditional distributions for mixed

discrete and continuous responses. The advantages and the favorable predic-

tive performance of the model are demonstrated using data from the Second

Longitudinal Study of Aging (LSOA II).

Keywords: R-vine, pair copula construction, GLM, LSOA II
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1 Introduction

1 Introduction
The aim of this study is to demonstrate the use of a novel copula model for discrete

and continuous response variables, which will help to broaden our understanding of

pathways to comorbid conditions. We apply this model to data from the Second Lon-

gitudinal Study of Aging (LSOA II), which contains information on chronic diseases

in the age group of 70+ on the national level.

The prevalence of chronic diseases tends to increase with age. Heart disease, stroke,

hypertension, diabetes, obesity, and arthritis are among the most common. While

the aforementioned conditions are often studied in an isolated setting, the elderly

are likely to develop “comorbid conditions”, which refers to one or more diseases or

conditions occurring together with the primary condition. Although there have been

extensive studies exploring the relationship between two conditions controlling for

other comorbid conditions, little research has been focused on comorbid conditions in

a systematic joint modeling framework. This might be helpful to fill the gaps in our

current understanding of comorbidity and reveal multivariate relationships.

Given the discrete nature of some response variables, copula models for continuous

data cannot be applied to the LSOA II data. There are two standard methods for

discrete marginal distributions in copula modeling. (i) For copula functions avail-

able in closed form, the probability mass function (pmf) can be computed by taking

finite differences of the copula function for the discrete margins. This means that

the number of evaluations of the copula function grows exponentially with the num-

ber of discrete variables (for our PCC model, the number of evaluations of copula

functions only grows quadratically). Recent advances in computational capabilities

and in approximation methods to the likelihood (see Masarotto and Varin (2012) or

Nikoloulopoulos (2013)) increase the scope of application for this method. However,
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1 Introduction

the basic challenge that the computational complexity increases significantly with

dimension and sample size remains. For further applications of models of this class

see for example Shen and Weissfeld (2006), Nikoloulopoulos and Karlis (2006), Song

et al. (2009) or He et al. (2012). (ii) As an alternative to the direct application

of a copula to discrete data, latent continuous variables may be introduced. Then,

the dependence structure of the latent variables is modeled instead of the discrete

variables (see Pitt et al. (2006), D. Hoff (2007), Dobra and Lenkoski (2011), Mur-

ray et al. (2013), where this is approach is applied for Gaussian models, Smith and

Khaled (2012), Danaher and Smith (2011) extend the approach to a non-Gaussian

setup). This has appealing features since it enables practitioners to apply well-known

dependence models and also helps to avoid technicalities when working with discrete

copulas (Nešlehová 2007; Genest and Nešlehová 2007). However, inference for such

models is usually computationally difficult due to the latent variables.

The method presented here is based on pair copula constructions (PCCs) and has

two major advantages over existing copula models. By generalizing the models of

Panagiotelis et al. (2012) and Aas et al. (2009), it is computationally efficient for dis-

crete variables and makes maximum likelihood inference feasible in high dimensions.

It further combines different and also asymmetric copula families in a multivariate

model, giving rise to very flexible higher dimensional distributions.

The remainder of the paper is structured as follows. Section 2 introduces the multi-

variate model which we consider, and inference and model selection is considered in

Section 3. The motivating data set of our study is analyzed in Section 4. Section 5

summarizes our results and concludes the paper.
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2 Multivariate model

2 Multivariate model
In this section, we introduce the basic model using GLMs and the copula paradigm. In

a generic form, let Yijt be the response/outcome of the i-th patient for chronic disease

j at observation/wave t, with i = 1, 2, . . . , N , j = 1, 2, . . . , J and t = 1, 2, . . . , T . The

covariates we consider in our analysis for patient i, disease j and time observation t

are accordingly denoted as xijt.

For all j, t, we assume that Yijt are independent and have distribution function

Fj(yijt|µijt, φj,t),

where the mean parameter µijt = hj(xijtβTjt) is a function of the covariates and φjt

is a possible scaling parameter. In particular, for j corresponding to a continuous

response variable (the BMI in the data set which we will consider later), Fj can be

the inverse Gaussian distribution with distribution function

Fig(y|µ, φ) = Φ

(√
φ

y

(
y

µ
− 1

))
+ e

2φ
µ Φ

(
−
√
λ

y

(
y

µ
+ 1

))
,

and hj can be chosen as hj(.) = exp(.). If j corresponds to a binary response variable

indicating the presence/absence of a chronic disease, a natural choice for Fj is the

Bernoulli cdf with

Fb(y|µ) =


1 y ≥ 1

1− µ 1 > y ≥ 0

0 0 > y

.

Here, the canonical choice for the link function hj is hj = 1
1+e−(.) .
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2 Multivariate model

Furthermore, we assume that for any t, the marginal distributions Fj are linked with

a copula function Ct. Hence, the joint distribution function for the outcome variables

(Yi,1,t, . . . , Yi,J,t) given covariates (xi1t, . . . ,xiJt) is given as

Ft(yi,1,t, yi,2,t, . . . , yi,J,t|xi1t, . . . ,xiJt)

= Ct(F1(yi,1,t|µi1t, φ1t), F2(yi,2,t|µi2t, φ2t), . . . , FJ(yi,J,t|µiJt, φJt)).
(1)

This copula function is constructed from pair copula functions by subsequent condi-

tioning. To illustrate the general principle, let us first consider a three dimensional

example with two continuous variables Y1 ∈ R, Y3 ∈ R with densities f1, f3 and one

discrete variable Y2 ∈ Z with pmf p2. For the decomposition into bivariate building

blocks, we start with the (generalized) joint density of Y = (Y1, Y2, Y3). With gener-

alized density, we mean the density of Y w.r.t. the product measure on the respective

supports of the marginal variables. For discrete margins with values in R this is the

counting measure on the set of possible outcomes, for continuous margins we consider

the Lebesgue measure in R. Given the cumulative distribution function FY of Y, it

is given by

fY(y1, y2, y3) =
∂2

∂y1∂y3
(FY(y1, y2, y3)− FY(y1, y2 − 1, y3)) ,

while the generalized density f2 of Y2 is its pmf f2(.) = p2(.). By conditioning, the

joint density can be decomposed as follows:

fY(y1, y2, y3) = f1|2,3(y1|y2, y3) · f2|3(y2|y3) · f3(y3). (2)

Using Sklar’s theorem, we will now decompose the conditional densities in (2). Let us

first consider the distribution of Y1 and Y3 given Y2 = y2 for some y2 ∈ Z, which has a
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2 Multivariate model

corresponding copula C13|2. To simplify the following calculations and later inference,

we will assume that C13|2 does not depend on y2. This means that we are working

with a simplified pair copula construction, for a discussion in the continuous case see

Stöber et al. (2013). For the conditional densities in (2), this means that

f1|2,3(y1|y2, y3) = c13|2(F1|2(y1|y2), F3|2(y3|y2)) · f1|2(y1|y2)

f2|3(y2|y3) =

(
∂

∂y3
C23(F2(y2), F3(y3))−

∂

∂y3
C23(F2(y2 − 1), F3(y3))

)/
f3(x3),

where C23 is the copula corresponding to the bivariate marginal distribution of Y2 and

Y3. Similarly, with the copula function C12 corresponding to the bivariate marginal

distribution of Y1 and Y2, f1|2(y1|y2) can be further decomposed as

f1|2(y1|y2) =
∂

∂y1

(
C12(F1(y1), F2(y2))− C12(F1(y1), F2(y2 − 1))

F2(y2)− F2(y2 − 1)

)
.

From this, F1|2(y1|y2) is easily obtained as

F1|2(y1|y2) =
C12(F1(y1), F2(y2))− C12(F1(y1), F2(y2 − 1))

F2(y2)− F2(y2 − 1)
,

and the expression for F3|2(y3|y2) follows analogously. Thus, fY(y1, y2, y3) can be

expressed in terms of only the corresponding marginal distributions and the three

bivariate copulas C12, C23 and C13|2. To illustrate this graphically, we can use two

connected trees (Figure 1).

The first tree has the marginal variables as nodes and edges between 1 and 2 as well

as between 2 and 3 to represent the copula functions C12 and C23. The second tree

contains the edges from the first tree as nodes and an edge between them to represent

the conditional copula C13|2.
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2 Multivariate model

Figure 1 The trees representing the three dimensional example. The edges corre-
spond to copula functions in the decomposition.

1 2 3
1,2 2,3

T1

1,2 2,3
1,3|2

T2

The illustrated decomposition can be generalized to the d-dimensional case, with

copulas corresponding to a d-dimensional analogue of the trees in Figure 1. For this,

Bedford and Cooke (2001, 2002) introduced the regular vine (R-vine) as a graph

theoretic tool to organize valid decompositions. In general, an R-vine on d variables

constitutes a sequence of linked trees V = (T1, . . . , Td−1). As in our 3-dimensional

example, the first tree has nodes {1, . . . , d} corresponding to the d variables, and d−1

edges corresponding to unconditional pair copulas. The nodes of each subsequent tree

Ti are the edges of the previous tree Ti−1, and the edges correspond to pair copulas

of bivariate distributions conditioned on i − 1 variables in the decomposition. To

make sure that the conditional cdfs which form the arguments of these conditional

copulas can be calculated directly using already available copula functions (as for the

arguments F1|2 and F3|2 of C13|2 in our example) we require the proximity condition

to hold: If two nodes in tree Ti+1 are joined by an edge, the corresponding edges in Ti

must share a common node. A five dimensional example is illustrated in Figure 2.

Here, edges 3,4|2 and 2,5|3 share the common node 2,3 in tree T2 and can thus be

joined by an edge in tree T3. Edges 3,4|2 and 2,5|3 both contain the numbers 2,3 of the

common node. Thus, these numbers form the conditioned set of the new edge, while

the remaining numbers 4,5 which are contained only for one of the nodes become the

conditioning set. The new edge is labeled 4,5|2,3, it will correspond to the copula
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3 Inference and model selection

Figure 2 An R-vine tree sequence in five dimensions with edge indices.

1 3 4

2 5

1,3 3,4

1,2

1,5
T1

1,2 1,3 3,4

1,5

2,3|1 1,4|3

3,5|1

T2

2,3|1 1,4|3 3,5|1
2,4|1,3 4,5|1,3

T3

2,4|1,3 4,5|1,3
2,5|1,3,4

T4

of the conditional distribution of Y4 and Y5 given Y2 = y2, Y3 = y3 in a distribution

corresponding to the R-vine.

3 Inference and model selection
Now we outline the inference procedures which we will use to fit the described model

to observed data. We will follow the paradigm of maximum-likelihood (ML) esti-

mation to choose parameters to maximize the likelihood of observed data under the

assumed model (for an overview of Bayesian methods for PCCs see Czado et al.

(2013) and Smith et al. (2010)). Under standard regularity conditions, the maximum

likelihood estimator (MLE) θ̂n for n independent observations is strongly consistent

and asymptotically normal:

√
n I(θ0)

1/2
(
θ̂n − θ0

)
d−→ N(0, Ip),
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3.1 Marginal regression models

where θ0 is the true parameter and Ip the p×p identity matrix. The Fisher information

matrix I(θ0) can be approximated by the observed information In(θ̂) at the ML

estimate θ̂n defined as

In(θ̂n) =

[( ∂2

∂θi∂θj

n∑
i=1

`n(θ)
)
i,j=1,...,p

]
θ=

ˆθn

, (3)

where `n(θ) is the log likelihood function. This asymptotic behavior allows to approx-

imate the covariance matrix of the parameter estimates θ̂n by 1
n
In(θ̂n)−1. Exploiting

the hierarchical nature of R-vine copulas (see Stöber and Schepsmeier (2013)), the

Hessian matrix in (3) can be calculated analytically for our model. This enables

us to calculate the observed information and to estimate standard errors for copula

parameter estimates as well as p-values for regression parameters.

To reduce the complexity, two-step estimation procedures are popular for copula

models (Joe and Xu 1996; Joe 1997). Since our main interest is to estimate joint and

conditional probabilities, we will follow this two-step approach in model selection and

(i) choose covariates and interaction terms for the marginal models (Section 3.1) first

and estimate the marginal parameters assuming independence and (ii) subsequently

choose an appropriate PCC (Section 3.2). Once the model is selected, we re-estimate

the marginal and copula parameters using joint ML estimation.

3.1 Marginal regression models

For the selection and initial parameter estimation for marginal regression models we

use the statistical software package R (R Development Core Team 2011). To select

the relevant covariates and interactions from a given set of possible covariates we will

apply the Akaike Information Criterion (Akaike 1974), which is given by the negative

log-likelihood plus the number of parameters as a punishment term.
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3.2 Regular vine copula

To minimize this criterion, a stepwise procedure starting with a fully saturated model

(i.e. including all possible covariates and interactions) is applied, removing in each

step the term with the highest possible reduction in AIC until no further reduction

is possible. To fit the parameters of the GLMs, we apply iteratively reweighted least

squares for maximum likelihood estimation (Green 1984).

3.2 Regular vine copula

In this section, we start with calculating the generalized density of an R-vine copula

model in arbitrary dimension. Based on this we illustrate how a suitable copula model

is selected adopting ideas of Dißmann et al. (2013).

Let us consider d random variables Y1:d = (Y1, . . . , Yd), with a joint density function

f(y1, . . . , yd). By subsequent conditioning, we can factorize this density as

f1:d(y1, . . . , yd) = f1|2:d(y1|y2, . . . , yd) · f2|3:d(y2|y3, . . . , yd) · . . . · fd(yd). (4)

This yields an expression where every term is of the form fj|(j+1):d(yj|yj+1, . . . , yd),

and we choose j < h ≤ d to further decompose (4). Let us denote y(j+1):d\h :=

(yj+1, . . . , yh−1, yh+1, . . . , yd). In the case where Yj and Yh are both continuous, we

can express fj|(j+1):d as

fj|(j+1):d(yj|y(j+1):d) = fh|(j+1):d\h(yh|y(j+1):d\h)

· cj,h|(j+1):d\h
(
Fj|(j+1):d\h(yj|y(j+1):d\h), Fh|(j+1):d\h(yh|y(j+1):d\h)

) (5)

by applying the bivariate version of Sklar’s Theorem for densities. For discrete vari-
ables, we write Fj(yj,0) := Fj(yj) and Fj(yj,1) for the left-hand limit of Fj at yj to
simplify notation. In the case where Yj ∈ Z, this corresponds to Fj(yj,1) = Fj(yj−1).
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3.2 Regular vine copula

With this, we can decompose the conditional density fj|(j+1):d(yj|yj+1, . . . , yd) as

fj|(j+1):d(yj |y(j+1):d) = P (Yj = yj |Y(j+1):d = y(j+1):d)

=
P (Yj = yj , Yh = yh|Y(j+1):d\h = y(j+1):d\h)

P (Yh = yh|Y(j+1):d\h = y(j+1):d\h)

=

∑
ij ,ih=0,1(−1)ij+ihP (Yj ≤ yj,ij , Yh ≤ yh,ih |Y(j+1):d\h = y(j+1):d\h)

P (Yh = yh|Y(j+1):d\h = y(j+1):d\h)

=

1∑
ij ,ih=0

(−1)ij+ih
Cj,h|(j+1):d\h

(
Fj|(j+1):d\h(yj,ij |y(j+1):d\h), Fh|(j+1):d\h(yh,ih |y(j+1):d\h)

)
fh|(j+1):d\h(yh|y(j+1):d\h)

= cj,h|(j+1):d\h · fj|(j+1):d\h(yj |y(j+1):d\h),

(6)

c.f. (Panagiotelis et al. 2012), where we write

cj,h|(j+1):d\h :=

1∑
ij ,ih=0

(−1)ij+ih
Cj,h|(j+1):d\h

(
Fj|(j+1):d\h(yj,ij |y(j+1):d\h), Fh|(j+1):d\h(yh,ih |y(j+1):d\h)

)
fh|(j+1):d\h(yh|y(j+1):d\h)fj|(j+1):d\h(yj |y(j+1):d\h)

,
(7)

for the discrete equivalent of the copula density in the continuous case. Let us now
assume that Yj is discrete and Yh is continuous. We denote the derivative of a copula
C(·, ·) with respect to its first (second) argument by ∂1C(·, ·) (∂2C(·, ·)). Defining

cj,h|(j+1):d\h :=

=

1∑
ij=0

(−1)ij
∂2Cj,h|(j+1):d\h(Fj|(j+1):d\h(yj,ij |y(j+1):d\h), Fh|(j+1):d\h(yh|y(j+1):d\h))

fj|(j+1):d\h(yj |y(j+1):d\h)
,

(8)

allows to write the conditional density fj|(j+1):d as

fj|(j+1):d(yj |y(j+1):d) = P (Yj = yj |Y(j+1):d = y(j+1):d)

=
∂

∂yh
Fj,h|(j+1):d\h(yj,1, yh|y(j+1):d\h)−

∂

∂yh
Fj,h|(j+1):d\h(yj,2, yh|y(j+1):d\h)

=

1∑
ij=0

(−1)ij∂2Cj,h|(j+1):d\h(Fj|(j+1):d\h(yj,ij |y(j+1):d\h), Fh|(j+1):d\h(yh|y(j+1):d\h))

= cj,h|(j+1):d\h · fj|(j+1):d\h(yj |y(j+1):d\h).

(9)
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3.2 Regular vine copula

Similarly if Yj is continuous and Yh discrete, we write

cj,h|(j+1):d\h :=

=

1∑
ih=0

(−1)ih
∂1Cj,h|(j+1):d\h(Fj|(j+1):d\h(yj |y(j+1):d\h), Fh|(j+1):d\h(yh,ih |y(j+1):d\h))

fh|(j+1):d\h(yh|y(j+1):d\h)
,

(10)

and obtain

fj|(j+1):d(yj |yj(+1):d) =
∂

∂yj
Fj|(j+1):d(yj |y(j+1):d)

=
∂

∂yj

[
P (Yj ≤ yj , Yh = yh|Y(j+1):d\h = y(j+1):d\h)

P (Yh = yh|Y(j+1):d\h = y(j+1):d\h)

]

=

1∑
ih=0

(−1)ih
∂1Cj,h|(j+1):d\h(Fj|(j+1):d\h(yj |y(j+1):d\h), Fh|(j+1):d\h(yh,ih |y(j+1):d\h))

fh|(j+1):d\h(yh|y(j+1):d\h)

· fj|(j+1):d\h(yj |y(j+1):d\h) = cj,h|(j+1):d\h · fj|(j+1):d\h(yj |y(j+1):d\h).

(11)

It is now clear that each term in (4) can be further decomposed into an expression

containing appropriate bivariate copula functions, and conditional marginal densities.

Further, it involves marginal conditional distribution functions as arguments for the

bivariate copula terms. These can be obtained analogously to the marginal conditional

densities above. Since the conditional marginal densities occurring in (5) - (11) can

again be decomposed using the appropriate equation from (5) - (11), we conclude that

by subsequent conditioning and application of Sklar’s theorem, we can decompose the

joint density f1:d(y1, . . . , yd) of a multivariate random variable as a product of terms

involving bivariate (pair-) copulas, acting on appropriate conditional distributions.

However, given a decomposition into conditional densities (4), there are still many

choices to make (we have to choose a corresponding h for each j), and also the ordering

of the variables in (4) can be arbitrary.

As Bedford and Cooke (2001, 2002) showed, all these choices can be expressed by

choosing a corresponding regular vine structure V with edge sets Ei, i = 1, . . . , d− 1.
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3.2 Regular vine copula

The general expression for the (generalized) density of a general R-vine copula on

which we base our inference procedures is

f1:d(y1, . . . , yd) =
d∏
i=1

fi(yi) ·
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|De , (12)

where we write cj(e),k(e)|De also for discrete variables as introduced before. As (12)

shows, an R-vine copula with parametric components is specified by (i) an R-vine

tree structure V , (ii) the choice of a parametric pair copula family for each edge e

and (iii) the corresponding parameter θe. While we will estimate the parameters in

(iii) jointly with the parameters of the marginal regression models later, we must first

select a suitable copula model, i.e. (i) choose a tree structure V and (ii) choose a

suitable bivariate copula for each edge from a given set of available copulas.

As a first approach, we adopt the algorithm of Dißmann et al. (2013), which is mod-

ified for the case of mixed responses as follows: (i) For each pair of variables and

each parametric pair copula family under consideration, calculate the corresponding

value of the Akaike information criterion (AIC) from the copula data set. In our

3-dimensional example, we would calculate the AIC for the pairs 1, 3, 2, 3 and 1, 2.

(ii) Create a fully connected graph where the set of nodes N is the set of marginal

variables (ex: {1, 2, 3}), and the set of edges E contains an edge between every pos-

sible pair of variables (ex: 1, 3, 2, 3 and 1, 2). Associate to each edge the highest AIC

value which has been estimated for the corresponding variables in step (i) as edge

weight. (iii) Using the algorithm of Prim (1957) determine the maximum spanning

tree corresponding to this graph, i.e. find a tree which maximizes the sum of edge

weights (In our example this would have been the tree T1 in Figure 1, i.e. the tree

containing edges 1, 2 and 2, 3). (iv) For each edge in the resulting tree, choose the

family for which we had obtained the highest AIC. (v) For each pair of edges i, k|D

14



4 Application: Comorbidity in the elderly

and i, j|D sharing a common node, determine pseudo observations for the next tree

by applying the conditional distribution functions Fk|i,D and Fj|i,D to the data. Be-

cause of the proximity condition, these are all pseudo observations which might be

required. (ex: 1, 2 and 2, 3 share 2, we compute F1|2 and F3|2) Proceed with the

pseudo observations as in steps 1 to 4, while only considering edges which respect

the proximity condition in step 2, until all trees together with their copula types and

parameters are determined.

4 Application: Comorbidity in the elderly

4.1 Data description

Our motivating data comes from the Second Longitudinal Study of Aging (LSOA

II), whose sample is nationally representative and is comprised of 9447 noninstitu-

tionalized civilians in the US who were 70 years old and over at the time of the

interview. Data in LSOA II were collected at three times: the baseline interview

was done in 1994-1996 (Wave 1). The same subjects had two consecutive follow-up

interviews between 1997 and 1998 (Wave 2), and between 1999 and 2000 (Wave 3).

We note that the time gaps among consecutive interviews vary by individuals, but

each interview was done about 2 years apart. LSOA II data, which is available from

http://www.cdc.gov/nchs/lsoa/lsoa2.htm, provides valuable information on long

term biomedical, social, and other various aspects of age-related conditions. Espe-

cially, chronic conditions were thoroughly asked during each follow-up, allowing us

to explore the long term trajectory of these conditions. While serial dependence is

likely to be present in this data, this is not explicitly described in our model where

we focus on changes in the dependence structure we observe over the three wave. In

future research, we can also consider explicitly describing the serial dependence of

the outcomes. Among many chronic conditions, we focus on the occurrence of the
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4.1 Data description

following six chronic conditions: hypertension (hyp), diabetes (dia), arthritis (art),

heart disease (hd), stroke (str), and obesity/underweight via the body mass index

(BMI). In general, although obesity causes more serious problems than underweight,

underweight is also known to be a risk factor for many health conditions for the el-

derly. While often BMI is dichotomized by defining a binary outcome of obesity (yes

or no) we analyze BMI as a continuous variable. This allows studying the association

between the covariables and the entire distribution of the BMI, without losing the

information imposed by its discretization (Fonseca et al. 2008). In particular, by this

modeling approach we can appropriately study the relevance of underweight or pos-

sible benefits of moderate overweight which might help solve the ongoing controversy

about appropriate BMI thresholds for elderly patients (Flicker et al. 2010; Singh

et al. 2011). Information on the presence of the six chronic conditions was collected

using standardized telephone interviews and self-administered questionnaires. In the

baseline interview, the following questions were asked regarding the presence/absence

of diseases: “Do you have XXX (a chronic disease)?” for hypertension and diabetes;

“Ever had XXX?” for arthritis, heart disease (coronary heart disease, angina, heart

attack, myocardial infarction), and stroke. During the follow-up studies, the subjects

were inquired about their current conditions and asked “Had XXX since last inter-

view?”. Response categories were recoded as yes or no for each condition, except for

BMI. Height was measured at the baseline, the BMI of each person at the different

time points was then updated based on their current weight.

Out of 9447 subjects, 5294 had missing data due to death and unknown reasons in

the follow-up interviews (or Wave 1 and Wave 2). Missing data can cause unbalanced

data that cannot fit into the proposed model that requires all outcomes being fully

observed. Therefore, if there are one or more components missing, we deleted the

data. Although we treated the data as missing at random due to model complexity,
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4.1 Data description

Table 1 Percentage of subjects with each condition who have another
chronic condition. Diagonal contains subjects with that condition
only. Percentages do not add to 100 because some patients have
more than two conditions.

Wave 2
No. (%) With Comorbid Condition

Chronic No. of Hyper-
condition Subjects tension Diabetes Arthritis Obesity Heart Disease Stroke

Hypertension 1035 228( 22) 147 ( 14.2) 682 ( 65.9) 157 ( 15.2) 220 ( 21.3) 55 (5.3)
Diabetes 237 147 (62) 22 (9.3) 156 (65.8) 57 ( 24.1) 71 ( 30) 17( 7.2)
Arthritis 1470 682 ( 46.40) 156 (10.6) 523 ( 35.6) 195 (13.3) 323 ( 22) 69 (4.7)
Obesity 282 157( 55.7) 57 (20.2) 195 ( 69.1) 31 ( 11) 45 ( 16) 8( 2.80)
HD 441 220 ( 49.9) 71 (16.1) 323 ( 73.2) 45 ( 10.2) 50 ( 11.3 ) 40 ( 9.1)
Stroke 92 55 ( 59.8) 17 ( 18.5) 69 ( 75) 8 ( 8.7) 40 ( 43.5) 5( 5.4)*

accounting dropout probability is encouraged for a more valid analysis (see Hong et al.

(2013)). Finally, our dataset included a subsample of 2444 patients after removing

missing information or "Don’t know" responses. If someone responded “don’t know”

for one question, but responded “yes” or “no” to other conditions, they were excluded

entirely. High rates of missing data among older people are not surprising and well

known. Note that in our sample subjects who died during the survey period were

not considered, since we focus on co-evolution of co-morbid conditions of the elderly.

Therefore, our analysis focused on the subjects who survived until the end of the

interview period between 1994 and 2000.

We find that comorbidity or multiple diseases were a common phenomenon in the

elderly population. Table 1 (data for Wave 2 only, other waves available upon request)

shows that arthritis and hypertension were the most common chronic conditions in

the sample. However, among those who had arthritis, only about 35% had arthritis

only. Similarly, about 20% of the subjects, who suffered from hypertension, had

hypertension only. Most subjects with at least one chronic condition also suffered

from arthritis or hypertension.
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4.2 Predictor variables

4.2 Predictor variables

Although there are many potentially useful predictors for our analysis, sex, age, in-

come, education, and smoking are certainly among the most common and are, there-

fore, used as covariates for the marginal GLMs in our model (Table 2). The incidence

of chronic diseases is known to increase with age; gender is associated with the pro-

gression and prevalence of chronic diseases. Further, Fleischer et al. (2011) reported

association of a socioeconomic gradient for education and income with the risk factor

profile for chronic diseases. People coping with chronic diseases are particularly vul-

nerable to the hazardous health effects of tobacco use. Smoking can exacerbate and

complicate symptoms of the chronic conditions.

Table 2 Covariates included in the model
Covariate Description

sex {0 = female, 1 = male}, the sex of the subject
age continuous, 70− 95, age at the beginning of the study

income continuous, 0 - 26, income level of the subject
edu continuous, 0 - 18 education level of the subject

smoke {0 = non− smoker, 1 = smoker}

4.3 Joint model for the six response variables

The marginal distributions of the six response variables in our data set are described

using GLMs. For the continuous distribution of the positive BMI values, we use an

inverse Gaussian GLM with log-link, while the absence/presence of the chronic condi-

tions is described by binomial GLMs with logit link. To decide which bivariate copula

families to include in the R-vine copula selection procedure and to demonstrate the

superior predictive performance of our joint copula model compared to independent

regression models, we perform 10-fold cross-validation (see Arlot and Celisse (2010)

for an overview of cross-validation procedures) as follows: The data is randomly par-
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4.3 Joint model for the six response variables

titioned into 10 patient sets of (almost) equal size. In each step, we leave out one of

these subsets and apply the model selection procedures from Sections 3.1 and 3.2 for

all three waves of observations. We include 10 different sets of pair copula families for

the vine copula selection as shown in Table 3. More details on the bivariate copula

families and parametrization we use can be found in Schepsmeier and Stöber (2014).

The prediction quality of the resulting models for the remaining data set is then com-

pared using the log predictive score (see Gneiting and Raftery (2007) for a review of

scoring rules). Table 3 lists the sum of log predictive scores for the 10 subsets where

we subtracted the scores corresponding to the benchmark independence model.

Table 3 Differences of log predictive scores to the independence models for different
sets of copula families under consideration. We use the abbreviations N
(Gauss), F (Frank), C (Clayton), J (Joe) and G (Gumbel). An extensive
discussion of bivariate copula families and their properties can be found in
Joe (1997) or Nelsen (2006).

Model class Families log predictive score
1 N 363.8
2 F 360.6
3 N, F 365.4
4 N, C 356.3
5 N, J 365.5
6 N, F, C 365.1
7 N, F, J 366.4
8 N, F, C, J 366.2
9 N, F, C, J, G 366.4
10 N, F, C, J, G + rotations by 90◦, 180◦ and 270◦ 366.2

The independence model is outperformed for all choices of family sets. Further, we

see no indication of overfitting when more copula families are included, but a loss in

predictive performance when some are excluded, in particular for the Gaussian and

Frank copula. For this reason, we choose modelclass 9 with Gaussian, Frank, Clayton,

Joe and Gumbel copulas for our further analysis since we believe it to offer the best
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4.4 Results

compromise between flexibility, predictive performance and computation tractability.

For the whole data, the selected model is the following: We use GLMs for the mod-

eling of marginal response variables (the covariates are available upon request). The

dependence between these marginal models is then subsequently described using a

discrete-continuous R-vine copula, with R-vine structures and associated pair copu-

las as shown in Figure 3 for Wave 2. Comparison of the resulting model probabilities

with the observed probabilities indicates that the model can accurately describe the

observed dependence patterns.

Since the selection procedure of Section 3.2 selects the strongest dependencies (i.e. the

dependencies where the corresponding copula terms lead to the biggest improvements

in the joint likelihood) first, these are on the first trees of Figure 3. For the first tree T1,

copulas between BMI and diabetes, BMI and hypertension as well as heart disease

and stroke are selected for all three waves of observations. This shows that these

are the most important dependencies in the data. On the other hand, the copulas

on higher trees correspond to weaker conditional dependencies which might even be

close to conditional independence.

4.4 Results

Due to restrictions of space for this article, we only present results for Wave 2 in the

following. The results for Wave 1 and Wave 3 are available upon request. While mod-

eling and interpreting dependency between purely continuous variables is relatively

well understood, this is more challenging in the presence of discrete outcomes. For

purely continuous variables, most researchers will look at the theoretical rank cor-

relations and bivariate tail dependencies associated with a copula model, which are

usually good summary statistics for the data. In the setup with discrete and continu-

ous outcomes considered here, changes in strength of dependence can be expressed by
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4.4 Results

Figure 3 The R-vine tree structure, pair copulas and corresponding parameter es-
timates for the second wave of observations of the six response vari-
ables. Here, the pair-copulas are parametrized in terms of the theoretical
Kendall’s tau values which would result in the purely continuous case.
The variables are labeled as follows: hypertension (hyp), diabetes (dia),
arthritis (art), heart disease (hd), stroke (str), and body mass index (BMI).
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different copula families being selected. In particular, the limiting dependence behav-

ior (for large and small values of the continuous variable, respectively) of conditional

distributions is different across copula families. While our inference procedure yields

point estimates and standard errors for all model parameters and allows to compute

p-values for regression parameters we omit listing these estimates here. Instead, we

compute conditional probabilities from our model to better understand the results.

For example, we explored the conditional probabilities of each chronic condition given

BMI by category of predictors such as age level. Here, conditional probabilities in-

volving marginal covariates are computed as follows: Let xi be the vector of covariates
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4.4 Results

for patient i, z1, z2 ∈ R and Y the vector of outcomes. Then

P (Yhyp. = 1|BMI = z1, age ≤ z2) :=
∑

i|xi,age≤z2

P (Yhyp. = 1|BMI = z1,xi)
#{i|xi,age ≤ z2}

,

i.e. we average over all relevant covariate vectors in the population. When not

conditioning on marginal covariates, we have

P (Yhyp. = 1|BMI = z1) :=
N∑
i=1

P (Yhyp. = 1|BMI = z1,xi)
N

,

where N is the number of patients. To reduce the computational complexity for

producing the plots with the density of BMI given other outcome variables, we show

it for an “average” patient in our sample. This means that we have for example

fBMI(z|Yhyp. = 1, Yart. = 1) := fBMI(z|Yhyp. = 1, Yart. = 1,xaverage),

where xaverage refers to a female non-smoker with 75.57 years of age at the beginning

of the study, and education score of 12.1 and an income score of 17.64. Figure 4

depicts the relationship between a subject’s BMI and the conditional probability of

hypertension, diabetes and arthritis for the different time periods. The top, middle,

and bottom rows represent the patients with hypertension, diabetes and arthritis,

respectively. The different lines in each plot correspond to different age groups. The

solid line is the mean level for patients of age ≤ 72 at the beginning of the study,

dashed for 72 < age ≤ 77, dotted for 75 < age ≤ 78, and dash-dotted for age > 78.

In Figure 4, we can see that higher probabilities of observing the three diseases (hy-

pertension, diabetes and arthritis) are associated with increasing BMI values. First,

the probability of diabetes (upper right panel) is almost linearly increasing with BMI.
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4.4 Results

Figure 4 Conditional probability of observing hypertension (upper left panel), dia-
betes (upper right panel) and arthritis (lower panel), respectively, given a
certain value for BMI. The solid line is the mean level for patients with
(age ≤ 72) at the beginning of the study (dashed: 72 < age ≤ 75, dotted:
75 < age ≤ 78, dash-dotted: age > 78).
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4.4 Results

This positive association between diabetes and BMI (or obesity) has been reported for

all ages (Nguyen et al. 2011) and it is widely accepted that BMI is one of the strongest

predictors for diabetes. Therefore, sustained weight loss can bring a reduced risk of

diabetes, as studied in Moore et al. (2000). Meanwhile, it is interesting to note that

the prevalence of diabetes is slightly lower for the oldest elderly group in our sample,

which might be explained by a decline in BMI which is generally observed after about

60 years of age (Elia 2001). A different trend is observed for the prevalence of arthritis

with respect to BMI: a family of S-shaped curves in the bottom panel. This confirms

a general positive association between BMI and arthritis which has previously been

reported in studies for the overall population (Zakkak et al. 2009). However, these

studies suggest a stronger increase for the heavily obese (BMI > 40) as compared to

the group with 30 < BMI < 40 than we find in our sample. This different behavior

which we observe might be attributable to a general decline in physical activity in

the elderly population, since physical activity is associated both with obesity and

with arthritis (Shih et al. 2006). Similar shapes are observable also for hypertension.

Though systematic studies are scarce, a general increase of blood pressure with BMI

has been previously reported for elderly populations (Masaki et al. 1997).

The different shape of the conditional probability curve of hypertension and arthritis

is expressed in the model by different copula families. The shape of the curve is

governed by the limits of the conditional distribution (Table 4). While, e.g., the

Frank copula has a finite limit for arbitrarily small BMI values, the limit for the

Clayton and Gaussian copula is 1. Thus, the probabilities continue to increase.

Figure 5 leverages our joint dependence model to show the complex dependence of

the probability of observing arthritis with BMI and other chronic conditions. The

upper left panel of Figure 5 shows the probability of arthritis given BMI with the

presence/absence of diabetes and the presence/absence of hypertension, thus pro-
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4.4 Results

Figure 5 Upper left panel: conditional probability of observing arthritis given BMI
and other chronic conditions: solid (diabetes, hypertension), dashed (dia-
betes, no hypertension), dotted (no diabetes, hypertension), dash-dotted
(no diabetes, no hypertersion).
Upper right panel: conditional probability of observing diabetes given BMI
and other chronic conditions: solid (heart disease, stroke), dashed (heart
disease, no stroke), dotted (no heart disease, stroke), dash-dotted (no heart
disease, no stroke).
Lower panel: density of BMI given other chronic conditions: solid (hyper-
tension, arthritis), dashed (hypertension, no arthritis), dotted (no hyper-
tension, arthritis), dash-dotted (no hypertension, no arthritis).
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Table 4 The limiting behavior of conditional distribution functions ∂2C(u1, u2) cor-
responding to well-known bivariate copula families (see Schepsmeier and
Stöber (2014) for details on the pair copula families and parametrization).

Copula Family u2 → 0 u2 → 1

Clayton 1 (u−θ1 − 1)−(1+1/θ)

Gumbel 1 0
Joe (1− u1)

θ−1 0

Frank eθ

eθu1
eθu1−1
eθ−1

eθu1−1
eθ−1

Gauss 1 0

ducing four different plots. This enables us to see the complete picture of arthritis

prevalence. The plot indicates positive dependence between arthritis and the other

two diseases (diabetes and hypertension). When a subject had both diabetes and

hypertension, the probability of having arthritis was higher compared to a subject

who suffers from only one or no chronic condition. Likewise, the probability of having

arthritis was higher with the obese people (BMI ≥ 30).

The upper right panel of Figure 5 presents the conditional probability of observing

diabetes given BMI and two other chronic conditions (heart disease and stroke).

The probability of diabetes is not affected strongly by the presence/absence of heart

diseases and stroke when the BMI is low, however, as the BMI level increases the

chance of arthritis was getting larger depending on the presence of the cardiovascular

diseases (CVD). Compared to the case when elderly have either heart disease or

stroke, the risk of diabetes jumped by more than 15% for obese patients with both

heart disease and stroke, indicating that diabetes is associated with CVD.

The lower panel of Figure 5 finally presents the conditional density of BMI given the

absence or presence of two other chronic conditions (heart disease and stroke). We

observe that conditioning on different combinations does not only affect the mean

of the distribution of BMI but also its variance. We want to note that caution is
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5 Conclusion

needed when interpreting probability plots since the displayed associations do not

imply causations. For instance, though we plotted the probability of diabetes given

presence/absence of CVD, diabetes is usually considered as the risk factor of CVD

in medical literatures. Our plots only serve as a reference to illustrate the multivari-

ate association among the diseases. We reported only selected probabilities due to

restrictions of space, additional plots are available upon request.

5 Conclusion
Our aim was to develop a copula model for the joint modeling of discrete and continu-

ous response variables in a regression setup to help understanding comorbidity of the

elderly and give new clues about its pathways. Building on the theory of PCCs we

developed a flexible model of multivariate association. While competing models for

multivariate discrete data are usually fitted using computationally intensive MCMC

methods, our model can be rapidly fitted to data sets with several thousand obser-

vations. This has been demonstrated using data from the LSOA II, where our model

selection heuristic and parameter estimation using maximum likelihood have been

applied. Since PCCs allow to combine different copula families, different limiting be-

havior of conditional probabilities for the presence of diseases given the BMI could also

be modeled. This improves the predictive performance of the copula model compared

to models where all bivariate families are the same as cross-validation shows.

Despite the success of our proposed method in providing useful information for the

health consequences of the elderly, we acknowledge some modeling limitations inher-

ent to the incomplete information in the LSOA II data and the model complexity.

One of the complicating aspects of the study with older individuals is that a researcher

often confronts with high drop-out rates due to death or some other unknown rea-

sons. Decedents and losses to follow-up were relatively high in the LSOA II data.
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Since the reason for dropout is likely to be associated with the elderly’s health status,

these drop-outs may not be simply ignored. Moreover, in the longitudinal data the re-

sponses are recorded over time, at different time points, and these observations within

each subject tend to be correlated. In our paper, we did not account for the dropout

and the inter-subject correlation due to the model complexity in the proposed copula

modeling setting, these can be further considered in our future research.

The response variables were based on a self-report study. Although the study of

Kriegsman et al. (1996) implicates that self-reports on chronic diseases are fairly

accurate, the use of self-reported diagnoses is another methodological limitation that

may have introduced both systematic errors. In particular, Kriegsman et al. (1996)

find that self-reports on arthritis were often incorrect. Utilizing clinical interviews

or general practitioners information might be better ways to obtain data. Finally,

while the inference procedures demonstrated here allow to estimate standard errors

for parameter estimates, model uncertainty cannot be addressed. This could be done

in a computationally more intense RJMCMC framework (c.f. Czado et al. (2013)).

Since the multi-dimensional mixed type of responses often appear in both cross-

sectional and longitudinal data, the proposed method can be applied to other ap-

plications in similar settings. (e.g, our approach can be adapted by a clinician who

desires to estimate the patient’s current status in multiple dimensions.) We hope that

our integrated analysis of the relationships among chronic conditions in the older peo-

ple will improve geriatric assessment and may be used in health service evaluation.
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