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Abstract

Both in classical multivariate analysis and in modern copula modeling, cor-
relation matrices are a central concept of dependence modeling using mul-
tivariate normal distributions and copulas. Since the number of correlation
parameters quadratically increases with the number of variables, parsimo-
nious parameterizations of large correlation matrices in terms of O(d) pa-
rameters are important. While factor analysis is commonly used for this
purpose, the use of vines is an attractive alternative: Vines are graphical
models based on a sequence of trees, and are based on the decomposition
of a correlation matrix in terms of algebraically independent correlations
and partial correlations. By limiting the number of trees, with so-called
truncation, parsimonious parameterizations of correlation matrices may be
found. Moreover, truncated vines and factor models may be joined to define
a combined model, with individual benefits from each of the two approaches.
The different parameterizations and how they are estimated for data are
discussed. In particular, spanning tree algorithms for truncated vines and
a modified EM algorithm for the combined factor-vine model are proposed
and evaluated in a simulation study. Three applications to psychometric and
finance data sets illustrate the different parsimonious models.
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1. Introduction

The vine graphical model or pair-copula construction has been popular in
the copula literature in recent years in order to use high-dimensional multi-
variate non-normal models. These models depend on a sequence of bivariate
or pair-copulas, some of which are applied to univariate margins and most
of which are applied to univariate conditional distributions. When all of
the pair-copulas are bivariate normal, the resulting multivariate vine copula
is multivariate normal or Gaussian. Vines have been important for copula
construction but they also provide an alternative way of view Gaussian de-
pendence. For the case of bivariate normal copulas applied to univariate
conditional distributions, the parameters are interpreted as partial correla-
tions. For a vine, the correlation matrix of a d-variate normal distribution
is parametrized in terms of d — 1 correlations and (d — 1)(d — 2)/2 partial
correlations that are algebraically independent. There are many such par-
tial correlation representations of a correlation matrix (see Kurowicka and
Cooke (2003) and Lewandowski et al. (2009)) and a vine is a graphical model
for these correlations and partial correlations summarized in a multiple tree
structure with d—1 trees (Bedford and Cooke (2002) and Kurowicka and Joe
(2011)). The parametrization with algebraic independence of the parameters
is a key to the extension to non-Gaussian dependence.

For high-dimensional applications with the number of variables d being
large, it is common in classical multivariate statistics to use a parsimonious
correlation structure with O(d) parameters instead of d(d—1)/2 correlations.
One such approach is factor analysis with p latent variables, where observed
variables are conditionally independent given the latent variables. Factor
analysis with p factors, generally with p < d, leads to one such structured
correlation matrix with the number of identifiable parameters equal to pd —
p(p — 1)/2. Another approach is through truncated vines with the vine is
truncated after ¢ trees with 1 < ¢ < d — 1; the result is called an /-truncated
vine. If ¢ = 1, then the result is a Markov tree dependence structure where
two variables not connected by an edge are conditionally independent given
the variables in the tree between them. However Markov tree dependence
may be too simple to explain all of the dependence in d variables, and 2-
truncated and 3-truncated partial correlation vines would be considered as
parsimonious models with 2d — 3 and 3d — 6 parameters, respectively.

These two approaches have been considered in the copula literature.
Krupskii and Joe (2013) have introduced the copula extension of factor mod-



els based on truncated vines rooted at latent variables, Brechmann et al.
(2012) study copula models based on truncated vines and is the second pa-
per with methodology on truncated vines for copulas after Kurowicka (2011).
Truncated vine structures are relatively new in the multivariate literature as
an approach to get a parsimonious dependence structure for high dimen-
sions. With Gaussian pair-copulas, truncated partial correlation vines have
not been fully exploited for applications except the special case of autore-
gressive (in time).

The main new contribution in this paper is the study of another parsimo-
nious dependence structure that combines factor models and truncated vines.
We call this a combined factor-vine model. To avoid being too general, we
focus only on Gaussian dependence here and consider the copula extension in
subsequent research. The simplest interpretation of these structures is that
there is conditional dependence given latent variables. This can be especially
useful and interpretable for applications when there is a latent variable that
can explain most but not all of the dependence in the observed variables.
Rather than adding latent factors, a truncated vine structure is assumed on
the residuals conditional on the latent variable.

The estimation of a combined factor-vine model is non-trivial because
of the latent variables and because the best truncated vine for the residual
conditional dependence is to be determined. Methods of factor analysis do
not apply and estimation techniques for vines can not be used directly. We
show that estimation can proceed with a modified expectation-maximization
(EM) algorithm, making use of minimum spanning trees for the truncated
vine part of the model.

After full specification of the truncated vines, with or without latent vari-
ables, they can be written as structural equation models (SEMs), for which
there are graphical representations through path diagrams to show condi-
tional independence or relationships given latent variables. However not all
SEMs have the form of truncated vines. We view this subclass of SEMs
as (a) having representations in terms of partial correlations that are alge-
braically independent, and (b) being amenable to optimization via spanning
tree algorithms in the sense of being able to find a ‘good’ structure with-
out a complete specification in advance. In the SEM literature (e.g., Bollen
(1989), Steiger (2001)), often the structural relations are assumed to come
from some psychometric theory. Bollen and Long (1992) mention that one
could go through a cycle of model specification and respecification. Our view
is that there might be latent variables that can explain most of the depen-



dence, but there might be ‘residual’ dependence conditioned on the latent
variables that can be parsimoniously explained by a truncated vine, more
precisely, using our newly proposed combined factor-vine model—in contrast
to factor models, where the variables are conditionally independent given the
latent variables.

An example of ‘residual’ dependence in the item response theory literature
is given in Braeken et al. (2007). In their model, there is one latent variable to
explain most of the dependence, and then conditionally there is exchangeable
dependence of each of several subgroups of items. We consider more general
‘residual’” dependence, because depending on the context, there might not be
obvious subgroups of variables that are approximately exchangeable. Within
a vine specification, no such restrictions need to be made.

An alternative approach to specify parsimonious correlation matrices is
via setting entries of the inverse correlation matrix to zero (see, e.g., Demp-
ster (1972) and Whittaker (2008)) and this leads to another graphical model.
The non-diagonal entries are proportional to negative partial correlations of
two variables given all the others. In contrast to vine-based models, this how-
ever does not lead to a parameterization in terms of algebraically independent
parameters. Moreover, if variables are added to or deleted from a data set,
the set of relevant partial correlations represented by inverse correlation ma-
trix changes. This is not the case in a vine. In fact, a truncated partial
correlation vine also implies zeros in the inverse correlation matrix, since
higher order partial correlations are set to zero. For factor models, the com-
mon dependence on latent variables implies that two observed variables are
conditionally dependent given other observed variables and the inverse cor-
relation matrices does not have zeros and might not have small non-diagonal
values. If the context suggest dependence through latent variables and the
inverse correlation matrix is not “sparse”, the combined factor-vine approach
can yield flexible and yet parsimonious parameterizations of correlation ma-
trices in terms of algebraically independent parameters.

The organization of the rest of this paper is as follows. In Section 2, a
structural form is given for multivariate normal models for d variables with
correlation structure having O(d) parameters. Notation is introduced for
Markov trees, truncated vines, factor models and the novel combined factor-
vine models. Section 3 has the general form of the log-likelihood for vine and
factor-vine models, and discusses spanning tree algorithms for identifying
the best spanning trees and doing the optimization. Section 4 has a small
simulation study to show that the algorithms do well in finding the vine
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structure. Applications to psychometric and finance data are given in Section
5. Section 6 discusses some future research.

Throughout, we are assuming that the sample size is large enough relative
to the number of variables so that the correlation matrix can be well esti-
mated and various structural correlation forms can be distinguished. When
the sample size is not large enough or even smaller than the number of vari-
ables, and if there is some idea of a parsimonious structured correlation ma-
trix such as considered in this paper, then shrinkage towards the structured
matrix can proceed as in Daniels and Kass (2001).

2. Correlation matrix parameterizations

In this section, we introduce different multivariate normal models that
have a structured correlation matrix with O(d) dependence parameters.

Let Z = (Z1,...,2Z4)", d > 3, be the vector of observed random variables,
where each component is without loss of generality standard normal, that is,
Z; ~ N(0,1) for all j =1,...,d. Further, let V = (V4,...,V},) be a vector
of p unobserved random variables, which are also standard normal, that is,
V; ~ N(0,1) for all j =1,...,p. The random vector (Z', V')’ is assumed to
be jointly multivariate normal.

We assume the linear representation:

Zj:Q0;Z+5;V+¢j€j, jzl,...,d, (21)

where ¢; ~ N(0, 1) is independent of Z;, i # j, and V, the ¢;s are mutually
independent, and v, is chosen such that Var(Z;) = 1. The variables in
V' are latent factors of Z and have loading vector §; € RP. The vector
w; = (@i, Pja) € R?, on the other hand, specifies between-variable
dependence of the components of Z. We assume that ¢;; = 0, and also
the vectors ¢;, j = 1,...,d, have to be chosen such that the model is well-
defined.

In other words, we assume that Z; is explained by its relationship to
other components of Z as well as to a set of common latent factors V.
The idiosyncratic variance is given through the €;s. In the following three
subsections we explain how specific choices of ¢; and §; lead to parsimonious
and well-defined parameterizations of the correlation matrix ¥ = (p;;); j=1,...d
of Z.



As a summary of the parsimony, we want O(d) non-zero parameters
among the ¢, and §; for j = 1,...,d. For example, for a 1-truncated vine
structure in (2.1), there is at most one non-zero element of ; for each j, and
for a 2-truncated vine structure, there are at most two non-zero elements of
p; for each j. See (2.8) and (2.3) for examples for how (2.1) is written for
1-truncated and 2-truncated vines, respectively. If the truncated vine is not
completely specified a priori, the positions of the non-zero coefficients are not
fixed in advance. A parsimonious model, with the truncated vine form to be
determined, has not been previously studied.

A reason for assuming a truncated vine structure to determine the ¢,
is that this permits a representation (or reparametrization) in terms of cor-
relations and partial correlations that are algebraically independent. For
notation, pjg.m,,..m, 1is the partial correlation of the variables j,k given
or conditioned on the variables mq,...,my;. The partial correlation with
no conditioning variables is a correlation. With one conditioning variable,

Pikm = (pjk — pjmpkm)/\/(l — P5m) (1 = pi,,) - There are recursive equations

for higher order partial correlations in terms of those of one fewer condition-
ing variable.

2.1. Markov trees and truncated vines

We first consider models without latent variables, that is, where §; = 0
forall j=1,...,d.

Markov trees

A Markov tree is a simple choice to build a valid multivariate model in
terms of ;. In a Markov tree on d variables, d — 1 of the d(d —1)/2 possible
pairs are identified as the edges of a tree, an acyclic connected undirected
graph, with d nodes corresponding to the variables. An exemplary Markov
tree for five variables is shown in Figure 1. Its edges are {1, 2}, {2,3}, {2,4}
and {1,5}.

Without loss of generality let the pairs in the Markov tree be {1,2} and
{j,k(j)} for j = 3,...,d, where 1 < k(j) < j (in Figure 1: k(3) = 2,
k(4) =2, k(5) = 1). Model (2.1) becomes

Zy = €1,
Zy = oy + e, (2.2)
Zj :QOjZk(j)—Fl/Jj&fj, j:3,...,d,



Figure 1: A five-dimensional Markov tree with edge indices.

where ¢p; = 0 and ¥; = /1 — gp? for all j = 1,...,d. Clearly, it holds
that ¢; = p;r@). For those pairs that are not selected in the Markov tree,
conditional independence is assumed. For instance, if k(3) = 2 as in Figure
1, then p3 = p3y and it assumed that ps1.0 = 0, so that ps; is modeled as
the product of po; and p3o; and similarly for all other pairs by recursively
exploiting the relationship

pje = Cov(Z;, Zy) = Cov(p; Zij) + Vi€, Zo) = QiPrii)e = Pik()Pr(),es

for £ ¢ {j, k(j)}.

In summary, a Markov tree model parameterizes the correlation matrix
of Z in terms of d — 1 parameters ¢;, j = 2,...,d, or equivalently p;5 and
PjkG), J =3, ...,d, that is, we have a parameterization X = 3(pa, ..., pq) =

S (12, {pjkiy 15 =35, d}).

Truncated vines

To overcome the strict assumption of conditional independence of pairs
that are not selected in the Markov tree, Bedford and Cooke (2002) proposed
the graphical model which they called a vine. A vine is a sequence of linked
trees, where the first tree is a Markov tree and subsequent trees specify
conditional dependencies. In order to obtain a valid probability distribution
from this graphical model, the notion of a d-dimensional regular vine has
been defined in terms of d — 1 trees 11, ...,T,;_1 as follows.

(i) T1 has nodes Ny = {1,...,d} and edges F;.
(ii) Tree T; has nodes N; = E;_y fori=1,...,d — 1.
(iii) Two edges in tree T; are joined in tree T;,; only if they share a common
node in tree T; (proximity condition).

A five-dimensional example is shown in Figure 2. The proximity condition
may be easily verified in this example. For instance, in tree T, one finds the
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Figure 2: A five-dimensional regular vine with edge indices.

edge {{1,5},{1,2}} =: {2, 5|1} which satisfies the proximity condition, since
{1,5} and {1, 2} share node 1 in tree 7.

Vines are now widely used in the copula literature to build dependence
models with flexible bivariate components (see Kurowicka and Joe (2011) for
a recent overview). In the context of multivariate normal distributions it has
been shown in Kurowicka and Cooke (2003) that when each of the d(d—1)/2
edges of a regular vine is identified by a (partial) correlation in (—1,1),
then the resulting correlation matrix from this parameterization is positive
definite. Without loss of generality let {1,2} and {j,k1(j)}, 7 = 3,...,d
be the pairs identified by Tj, where ki(j) < j. Then Ty identifies pairs
{7, k()3 {R209), ka ()3} =2 {5, k2(3)[R1(5)} for j =3, d with ky(j) < j,
which correspond to partial correlations pj i,y (j) (in Figure 2: ki(3) = 2,
ka(3) =1, k1(4) = 2, ko(4) = 1, k1(5) = 1, ko(5) = 2). This can be iterated
up to Ty 1. For ¢ = 1,...,d — 1, in tree T}, there are ¢« — 1 conditioning
variables for each edge, and there are d — ¢ 4+ 1 nodes and d — i edges. The
total number of edges over all trees is d(d — 1)/2 and each pair (j, k) appears
exactly once as conditioned variables (and the partial correlation has form
Pjkima,...mi_, i J, k are paired conditioned variables in tree 7). If the sequence
is stopped at a specific level ¢/ < d — 1, the vine is called ¢-truncated and
remaining partial correlations are assumed to be 0 (see Brechmann et al.
(2012)).



For the case of a 2-truncated vine in the form of Model (2.1):

Zy = ey,
Zy = pa1 21 + Paca, (2.3)
Zj = 0i1 i) T Cielra(i) T Vig5,  J=3,...,d,

where ¢11 = @12 = @22 = 0 and ¢; = \/1 — 03— 0% = 20k1(5) k() L1 P52
The extension to the f-level case is straightforward, while the Markov tree
model (2.2) corresponds to a 1-truncated vine.

The parameters ¢;; and ¢;s can be parameterized in terms of correlations
Pj k. (j) and partial correlations pj r, )k (j)- For this we temporarily abbreviate
k1(j7) to k1 and ky(j) to ko in order to improve readability. It holds that

piky = Cov(Zj, Zy,) = ©j1 + ©j2Pkiks
1 = Var(Z;) = @5, + 03y + 20;10520k:k, + U5,

Pikaiks \/(1 — 2 V(L= pt ) = Cov(Z;, Ziy | Zk,) = @iaVar(Ziy|Zi,) = ©2(1 = pi,k,)s

where the right-hand sides follow by plugging in the model equations (2.3).
Solving for ¢;1, pj2 and 1; leads to:

Pi2 = Pikask: \/(1 - p?kl)/(l - pil’ﬂ) )
Pi1 = Pjik1 — Pj2Pkikas
%2' =1- %2'1 - 9032 — 205195205k = (1 — p?kl)(l - pikz;kl)‘

(2.4)

Note that this includes autoregressive time series models of order 2 as a
special case: For j = 3,k; = 2 and ky = 1 as well as p1o = pa3 = p and
p132 = @, it follows that @32 = @, 31 = p(1 — a) and 3 = (1 — p*)(1 — a?),
which matches results in books on times series analysis (see, e.g., Box et al.
(2008)).

Similar to the Markov tree model (2.2), the full correlation matrix can
be conveniently computed from this parameterization. While the p;;, (;)s are
directly given from the model, the pj,;)s are obtained using

Pika() = COV(Z}, Zky()) = @i1Pk (ko) T+ P2

and all other correlations by exploiting
pie = Cov(Z;, Zs) = pj1prGye + PizProres - for £ € {7, k1(j), k2(5)}. (2.5)
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For instance, for j = 3 in Figure 2, we have k1(3) = 2 and k»(3) = 1, so
that ps31 = @s1021 + @32 and pse = @31p20 + P32p1¢ for £ € {4,5}; and similar
expressions hold for j =4, 5.

The truncated vine model (2.3) hence leads to a parameterization 3 =
E(p21, - Pars P32, - -5 pa2) = B(p12, {PjkaG)s Pika(iyiba ) 3 = 35, d}) of
the correlation matrix. The number of parameters in the model is 2d — 3,
which corresponds to the number of edges in 77 and T5. In general, an /-
truncated vine model with ¢ < d — 1 has Y¢_ (d — 1) = £(d — (£ + 1)/2)
parameters which are fewer than in the unstructured model with d(d — 1)/2
parameters if d > ¢+ 1.

2.2. Factor models

Classical factor models (see, e.g., Harman (1967), Lawley and Maxwell
(1971), Johnson and Wichern (2002)) are a sub-class of the model formulation
(2.1) when setting ¢o; = 0 for all j = 1,...,d. That is, we have in matrix-
vector notation

Z = AV + Ve, (2.6)

where A = (0j;)=1,...d, i=1,..p is called the loading matrix, € = (e1,...,¢4)’

.....

and V is diagonal with entries ¥;; = ¢; = /1 — 5;-5j for j=1,...,d. Then

the correlation matrix of Z is given by
S(A) = AA + U2, (2.7)

This representation however does not uniquely identify the loading matrix
A, since it is not invariant with respect to orthogonal transformations. Let
U € RP*? such that UU’ = I. Then the loading matrix A := AU implies the
same parameterization as in (2.7): AA" = (AU)(AU) = AUU'A" = AA/,
that is, $(A) = B(A).

One possibility to ensure uniqueness (up to sign) of the loadings is to
choose the orthogonal matrix U such that A has zeros in the upper right
triangle, d;; = 0 for 1 < 5 < 7 < p, and strictly positive diagonal entries,
di; >0foralli=1,...,p (Geweke and Zhou (1996)). These and alternative
constraints imply that the factor model (2.6) has v = $((d — p)? — (d + p))
degrees of freedom. Requiring v > 0 leads to a bound on the maximum
number of factors for given d. For instance, in three and four dimensions
there can be at most one factor, in five dimensions at most two factors, while
three factors are only possible if d > 6.
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The above constraint then implies that the total number of parameters
of the p-factor model (2.6) with d sufficiently large is > % (d —i+ 1) =
p(d — (p — 1)/2). A one-factor model therefore has d parameters, while a
2-factor model has 2d — 1.

2.3. Combined model

While the model classes in the preceding two subsections assume either
direct between-variable dependence or latent variables, one may also combine
both models. That is, we assume ¢, # 0 and §; # 0 in Model (2.1). In the
simplest case, we have one factor V' and one neighbor Zj;, of each variable
Zj, j=1,...,d, in a Markov tree, which corresponds to a 1-truncated vine
model. For d > 5, Model (2.1) can therefore be stated as

Zl = (51V + ¢1517
Z2 = gngl + 52V + w2€27 (28>
Zj = pjZig + 0V + e J=3,....d,

where, without loss of generality, {1,2} is an edge of the Markov tree and
1 = 0. Further, the correlations between Z; and V' are denoted by p; , and
P = \/1 — 05 — 02 = 20;0;pr(j),v - Model (2.8) is similar to a 2-truncated
Vine, where Zkl(j) =V and Zkz(j) = Zk(j)-

This is illustrated in Figure 3, which shows two graphical representations
of the model with one latent variable and d = 5 observed variables. In a psy-
chological context, V' is a general latent variable for an instrument and there
is some conditional dependence in the items after conditioning on V'; items
2, 4 and 5 are conditionally linked to item 1, and item 3 has stronger con-
ditional dependence with item 2. See the applications in Section 5 for more
concrete meanings of the individual items. In a context of financial assets,
V' is a general economic variable, and there is some conditional dependence
in the asset prices after conditioning on V'; some pairs of assets may have
stronger conditional dependence if they are in the same sector. Section 5
also has a financial application.

From an interpretation point of view, this is a good model to consider
when the 1-factor model has moderate to large absolute loadings and there
are some significant deviations of the observed correlation matrix and the
fitted correlation matrix based on the 1-factor structure. The ‘residual’ de-
viations might be explained with some partial correlations (conditioned on
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Figure 3: A five-dimensional combined 1-factor and 1-truncated vine model represented
as a 2-truncated vine (left) and as a structural equation model with residual dependence
(right; see Section 2.4).

the latent variable) that are smaller than the correlations with the latent
variable. Then the dependence in the model is explained as being based on
a latent variable with some additional residual dependence.

Using short-hand notation k for k(j), and pj.v as the partial correlation
of variables j, k given V', we get similarly for the 2-truncated vine model (2.3)
that

piv = Cov(Z;,V) = pjpry + 0j,
1= Var(Z;) = ¢ + 0; + 20;0;pryv + 175,

pjk;V\/(l =01 = piy) = Cov(Z;, Zy|V) = @;Var(Ze[V) = ¢;(1 = pjv);

this has the loading parameters J; as well as the between-variable parameters
¢; in terms of correlations and partial correlations as

i = pjk;V\/(1 =)/ (L=Piy)
0; = piv — QiPkv,
W} =1— 8 =07 =200k = (1 — piy) (1 — plpy).

Assuming that correlations pyy are known, the full correlation matrix may
then be obtained as well by interpreting Model (2.8) as a 2-truncated vine.

We thus have a correlation matrix parameterization ¥ = X(dy,. .., dq,
02, 0d) = B(prv,--Pav, {PjkG)v.J = 2,...,d}) in terms of 2d — 1
parameters, where d > 5. Extensions to additional factors and more vine
levels are straightforward using the models of Sections 2.1 and 2.2.
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Somewhat related to factor models, there are near non-identifiability is-
sues in that different versions of the linear representation (2.8) can lead to
similar correlation matrices. This is because the edges in the tree for residual
dependence can vary for the smaller residual correlations and lead to roughly
the same correlation matrix; larger residual correlations are less sensitive to
tree structure.

2.4. Relationship to structural equation models

The general model formulation (2.1) can be considered as a structural
equation model (SEM). These models are commonly used to specify and
assess causal relationships between observed and unobserved quantities of
data. They are particularly popular in psychometrics, where they are utilized
to build meaningful models around and including factor models. A standard
reference for SEMs is Bollen (1989), see also Steiger (2001),

However, for observational data, we are using these models to get parsi-
monious structures and not trying to infer causation. Latent variable models
are reasonable in many applications as an explanation of the dependence in
the observed variables, and we want some flexibility in the dependence con-
ditioned on the latent variables. Without experimental data, we do not have
a specific structure in mind, but a class of plausible parsimonious structures.

As noted in the introduction, our main interest in the representation
given in (2.1) is to derive models that lead to correlation matrices that are
based on O(d) parameters. The parameters can be in the form of regression
coefficients or partial correlations. SEMs are more general and not all can be
converted to the form of a truncated vine. While truncated vines guarantee
that the model is well-defined, in general one has to be careful to come up
with identifiable SEMs.

3. Estimation and model selection

In this section we discuss how the models presented in the previous section
can be estimated for data z; = (z;,...,2i4), @ = 1,...,n, which are the
realizations of a multivariate normal random vector with means of 0 and
variances of 1. We assume that the observations of each variable have been
standardized to have mean 0 and variance 1; that is, %Z?:l zij = 0 and
Ly 2 =1for j=1,...,d. Further, let R = (rjx);s=1,..4 be the sample
correlation matrix with entries r;, = %Z?:l zijzik. These assumptions will
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make the log-likelihoods at the maximum likelihood estimate (MLE) have a
simpler (interpretable) form.
The major challenges of the model estimation are twofold.

(i) The latent factors in Models (2.6) and (2.8) are unobserved.
(ii) The Markov and vine tree structures in Models (2.2), (2.3) and (2.8)
are unknown.

If the vine for residual dependence is completely specified, existing meth-
ods for SEMs can be used. In the following, it is shown how to deal with
both challenges. Also the goodness-of-fit of the fitted correlation matrix is
discussed.

3.1. Markov trees and truncated vines

Although the Markov tree model (2.2) corresponds to a 1-truncated vine
model, we discuss estimation of both models separately, since the case of
more than one vine tree is considerably more complicated, while the 1-level
case is quite illustrative. For both models we use the parameterization in
terms of (partial) correlations, since they do not impose any restrictions
on the parameters to ensure positive definiteness of the correlation matrix
Kurowicka and Cooke (2003).

Markov trees
Based on a product of conditional regression-type densities fz;z, ., J = 2,

d
fZ(z) = fZ1(Zl> H ijIZk(j)(Zj|Zk(j))7 z = (Zlv s sz)/v

the log-likelihood of the Markov tree model (2.2) with correlation matrix
3 =3X(pjry)J =2,...,d) has the form

. n IR _
L<pj,k(j)>] :27ad) = —§lOg|2’ - §ZZ;2 lzi

y 2
= =5 D log(1— () - {}:Zﬁzz zm i fé( 0
=2 I

7=2 =1 7)
(3.1)

where | - | denotes the matrix determinant and constant terms with 27 have
been omitted.
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From the above, one could get 7! in closed form, but that is not needed
to get the MLE of the pj (;)s. Maximizing the above reduces to d—1 separate
one-parameter optimizations of the form

n

n 1
Li(p) = =5 log(1 = p%) =5 > (i = pziw) /(L= 0%)s P = pjkii)-

i=1

Using that 1= L5 22 = L1570, ZiZ,k(j) and the form of the sample corre-

lation 7 k(;), this simplifies to

n

n
Li(p) = =5 log(1 - ) 51+ p* = 2priki)) /(1= p%)

with derivative

np  nlp—riag) PO+ P = 20m500))
L;(p) 3kG)) 3kG))

- (- (1—p?)?
Solving L (p) = 0 for p leads to p = 7;4;). Hence, the MLE of (3.1) is
DikG) = Tjk) for j =2,...,d. This however still leaves us with the problem

of selecting the optimal Markov tree with edges {7, k(j)}. This can be solved
as follows.
Substitution of pj x(;) = 7jk(;) back into the log-likelihood (3.1) leads to

L(Djriy,d =2,...,d)

d
__n 2 n 2 2 2
=—5 D _log(1 =15, - 5{1 + D (L4 75hg) — 250)/ (1= %k(jﬁ}
=2

J=2

SH

n

d
n
=—5 D _log(1—rjy) — 5d. (3.2)
j=2

Optimizing over all possible Markov trees therefore reduces to finding the
tree T with d — 1 edges {e = {J, k}} that minimizes

Z log(1 —r%,). (3.3)

e={j,k}eT

The optimal solution can easily be found using minimum spanning tree al-
gorithms such as the one by Prim (1957), which is guaranteed to find the
optimal solution when edge weights between nodes 1 < k < 7 < d are given
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by log(1 — TJQk) In other words, estimating Markov tree models (2.2) boils
down to a simple model selection problem. Note that (3.3) is written in a
way that does not depend on which variable is indexed as variable 1; the
previous assumption of edges {1,2} and {j, k(j)} for j = 3,...,d was made
for notational convenience.

Truncated vines

As in the model definition we concentrate on the case of a 2-truncated
vine model (2.3). The generalization to ¢-truncated vines is briefly discussed
subsequently.

For briefer notation we write ky; = ki(j), koj = ko(j) and set «a; :=
Pjka(j)ikr (j)- Similar to above, the product of conditional regression-type den-
sities ij‘Zk1j7Zk2j7

d

fZ(z) = le (Zl)fZ2\Z1 (Zl|22) H ij|Zk1j7Zk2]- (Zj|Zk1j7 Zij)’ z = (Zlv e 7Zd)/7

Jj=3

then leads to the log-likelihood of the 2-truncated vine model (2.3) with
correlation matrix X = X(p12, pjr,;» @, = 3,...,d) as

d
. n
L(Pl%ﬂjklj, Oéj,j = 3, e ,d) = —§ |:10g(1 — p%2) + ZlOg"{ﬂ?}
7j=3

n n d n 2
1 ) (2i2 — prazin)? (235 — ©1%iks; — Pi2%ike;)
H{ay el 5oy g )
i=1 i=1 Pr2 =3 i=1 J
(3.4)

After estimating p1o = 712 as in the Markov model (2.2), this can be split into
sequential log-likelihoods for ¢;1, @2, j = 3,...,d. For the conditional den-
sity [z iy Zngy s Pl is estimated from a previous stage, and then estimates
of ;1 and pjo, or equivalently estimates of pji,; and «;, are obtained.

That is, consider a log-likelihood of the form

n

n 1
Li(p1, p2) = ) log %2' D) Z(Zij — P1Ziky; — @22ik2j)2/¢? (3.5)

=1

where ¢; =1 — ‘P?1 - 90?2 —20j1052p, 1 = @j1 and gy = 2, and p = Tk ko,
is estimated from earlier in the sequence. The MLE of pj,; and «; can then
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be obtained after some calculus (see Appendix A) as pji,;, = 7j,, and

~ Tikoy = Tjk1;Tkyjko;

Oéj =
VA= )=t )

which is the sample partial correlation. This also implies that pjk,; = 7jk,,.

In the next step, an optimal 2-truncated vine tree structure needs to be
determined. For this, substitute pj,, = 7jx,, and a; = rjp, ., into (3.4) to
obtain

= Tikojiki;o (3'6>

d
~ ~ ~ . n > 7 n
Jj=3

d d
n n n n
= —gd—glog(l—rl) — 5 ) log(1—rj, ) — 5 > log(l—rf, ).
Jj=3 Jj=3
(3.7)

where the relationships (2.4) are exploited to express the MLE 1@ of ¢; in
terms of pj,, and a;.

Hence, optimizing over all possible 2-truncated vine tree structure amounts
to finding trees 77 and T, which minimize

Z lOg(l - T]2',k:) + Z log(l - sz'm;k)a

e={j,k}eT e={j,mlk}€T

where sample partial correlations are obtained from the sample correlation
matrix R as in (3.6).

The pattern of the 2-level case extends to /-truncated vines by working
with the regression formulation Z;|Zy, (), . . ., Z,(;)- The optimal {-truncated
vine tree structure is then given by trees 71, ..., 7T, that minimize

> log(l—r2),

ecTy,....Ty

where 7, is a sample partial correlation for edge e in trees Ts, ..., Ty 1. Note
that the log determinant of the correlation matrix 3 can be expressed using
a partial correlation vine without any truncation as 3 .. log(1—p?),
where p, is a partial correlation for edge e in trees Ty, ..., T; 1 (Kurowicka
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and Cooke (2006)). With truncation at level ¢, the higher order partial
correlations are set to 0, and the log determinant is 3 . 7 log(1 — p?).

As for Markov tree models, estimation of truncated vine models corre-
sponds to the model selection problem of choosing the right trees. While for
Markov tree models the optimal tree structure can simply be selected using
a minimum spanning tree algorithm, the sequential selection of trees in a
truncated vine model with more than one level is more complicated, since
the set of edges that can be used to construct a tree depends on the previous
tree according to the construction principles of regular vines. For instance,
in the case of a 2-truncated vine, the selection of minimum spanning trees
in terms of edge weights log(1 — r?) for both trees may not lead to the opti-
mal solution. While the minimum spanning tree is the optimal choice in the
second tree given the first tree, the minimum spanning tree may not be the
overall best choice for the first tree. The question therefore is how to identify
the overall best—or, at least, a near best—solution.

By Cayley’s theorem, the search space of 2-truncated vine structures on
d variables consists of the d%=? possible first trees, since the second tree is
optimally determined as a minimum spanning tree given the first tree. Other
than for small d, this search space is too large to evaluate all possible models
and then select the best one. We therefore propose two heuristic procedures
to better exploit this search space; these two procedures with neighbors of
trees and best spanning trees were not considered in Kurowicka (2011) and
Brechmann et al. (2012).

Neighbors of trees. Although it is only a locally optimal solution, a minimum
spanning tree may still be seen as a reasonable starting point for the search
of a better solution. One approach therefore is to look at neighbors of the
minimum spanning tree. We define a 1-neighbor of a tree T" as follows:

(i) Choose an edge e ¢ T and set 7" = T U {e}. Then the graph 7" is no
longer a tree but has a cycle C' of edges including e.

(ii)) Remove an edge f € C'\ {e} from 7" to obtain 7”7 =T"\ {f}. 7" is a
tree and called a 1-neighbor of T

In a similar way, we can define m-neighbors, where m € N edges are added
to a tree.

As an example for a 1-neighbor, consider 7} in Figure 2. If one adds
the edge {3,4}, there is a cycle C' = {{2,3},{2,4},{3,4}}. By removing for
example the edge {2,3} one obtains a valid tree again.
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For the selection of 2-truncated vines starting from the minimum span-
ning tree T', we propose to try out a number of edges e such that they are the
edges with the smallest weights log(1 — r2) that are not included in 7. To
obtain a tree with large overall weight, we then select f as the edge with the
largest weight in C'\ {e}. There are d(d —1)/2—(d—1) = (d—1)(d —2)/2
1-neighbors which may be constructed in this way. A similar approach has
been used by Gruber and Czado (2013) in the context of Bayesian model
selection of vines.

Best spanning trees. A straightforward extension to go beyond the minimum
spanning tree is to take into account a range of K best spanning trees, that
is, the K spanning trees with smallest weight. The problem of identifying
these K best spanning trees is however known to be NP-hard. Several al-
gorithms have been described in the literature to optimize the running time
and we implement the one by Gabow (1977). Note that there may of course
be 1-neighbors of the minimum spanning tree among the K best spanning
trees but this is not necessarily so.

If an /-truncated vine structure rather than a 2-level one is built, then
again only the (th tree is selected best as a minimum spanning tree given the
first £ — 1 trees and the sequential one-tree-at-a-time selection of minimum
spanning trees is very likely to not lead to the best fit. The search space now
consist of all (¢ — 1)-truncated regular vines and can clearly not be explored
entirely. Combinations of the above two approaches may be used to find a
reasonably good solution.

3.2. Factor models

There is a rich literature on factor models, which describes how to esti-
mate the factor loadings. We will therefore not go into details here. Common
approaches to estimation are direct MLE or the use of the iterative EM al-
gorithm by Dempster et al. (1977). An EM algorithm for factor analysis can
for example be found in Lange (2010).

3.3. Combined factor-vine model

Unlike the factor model (2.6), the factor-vine model (2.8) cannot be es-
timated by direct MLE, since not only the factors are unobserved but the
tree structure of the truncated vine is unknown, too. We therefore propose
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a modified EM algorithm which can deal with both issues for the case of one
factor and a 1-truncated vine.
Clearly, Z = (Z1,...,Z3) and V are jointly multivariate normal with

correlation matrix given by
~ 1 ,y/
= ('r 2) ’

where v := py = (p1v,...,pav)" is unknown, since V' is unobserved. The
observed correlation matrix of the data z; = (2;1,...,2), 1 = 1,...,n, is
denoted by R as before.

The modified EM algorithm will then proceed as follows: First, we obtain
the expected value of V' given the observations z; of Z (E-step). Then we
first maximize this expected value with respect to 7 to obtain a new estimate
of the factor loadings (first part of the M-step). In the second part of the
M-step the 1-truncated vine structure is estimated given the new estimate of
the factor loadings.

Let v, be the current estimate of the factor loadings and ¥, that of the
correlation matrix in terms of the 1-truncated vine. Then

V1Z = 2] ~ N(vZg 'z, 1 — 4055 o)

Assume that we observe “complete” data (V;,2}), i = 1,...,n. Then n™!
times the log-likelihood is

1
2

1 _ 1 _ 1 & (V _7/2—1% 2
og |- 51n(2 R) log(1—'5 )~ S L= E o
=1

where constant terms with 27 have been ignored and tr(-) is the matrix trace,
that is, the sum of diagonal elements. Taking the expectation of (3.8) for V;
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random given z; fixed for ¢ = 1,...,n then leads to
1 1 _ 1 _
QLY 2o, o) = — 5log[B] - (X7 R) — S log(1 — y'2 )
1< _ _ _
— 57 2 (MZ0 i — VS 2)? (1 - 'Sy
i=1

1 - B
— (I =7Z5 )/ (1 =42 1y)

2
1 1 1 o
= —§log]2|—§tr(2 R)—ilog(l—'yE v)
1 _ _ _ _ _
— 5 (1%, L y'STHR(E v - 'y)/(1—+'=7y)
1 - B
= 5 (1= 7%, ') /(1= 4'E ). (3.9)

If one formally applies the M-step to (3.9), then (3.9) is maximized with
respect to the parameters. As ¥ depends on v we split the M-step into two
parts. First we obtain a new estimate -, of 7 pretending 3 does not depend
on v and then we update the correlation matrix of Z by 3;. This strategy
is inspired by the Expectation Conditional Maximization (ECM) algorithm
proposed by Meng and Rubin (1993), which is a generalized version of the
standard EM algorithm and guarantees an increase in the model likelihood.

If we pretend X to be constant and independent of «, then taking the
derivative of (3.9) with respect to 4 and setting to 0 to get the root v, leads
to
D > e B € e 122 e T e o

1—~4Z 7y, (1= ~4Z 7 yy)?

_ (76251 — 7/12_1)R(25170 - X7y )Ty, (3.10)

(1= 7Z7y)?
STR(S0 1y - 27
1- ’7,12_1'71

This can be solved by the Newton-Raphson method, with ¥ replaced by R
as it is unknown.

An alternative estimate 4, is given by the regression-type moment esti-
mator

0

Y1 = Rzgl')’o/gga 08 = 'YE)EEIRE(;I’YO +1- ’7{)251707 (3.11)
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where the numerator is an estimate of the covariance of Z and V and the
denominator estimates the variance of V. In numerical examples, the use of
this moment estimator resulted in a slightly slower convergence of the EM
algorithm. This is however balanced in running time by a faster computation
of the M-step as no iterative Newton-Raphson method is required.

Using the moment estimator (3.11) it can be verified that

Q(717 2'70a EO)
1 1 _ 1 _
= — §log 13| — élog (1-~="1y) = St (=7'R)
LY E'RE ™y, 1op(1 - 27157y
2 1-%T 7y, 2 1-%37y

(E=v7)"'R) -

(3.12)

1og(1 =29/ ')
2 1- ’)”1271’71

1 1
= —5log|Z —ymf -5t
where we used that |Z[|]1 — v'S"v] = |Z] = [T — 49/| and (T —vy/)~! =
ST ETY ST (1 - 4ET ).

The dominant term of Q (v, 3|7y, X0) comes from the log determinant
term because the other terms approach a constant near —(d + 1)/2, with
—tr (X7'R) /2 becoming close to —d/2, while the two terms in (3.12) ap-
proach —1/2. For a 2-truncated vine (Section 2.1),

d d
DIEMLERTIE | (R | [CErs)

Jj=1 Jj=2

So, with ~ fixed at the current estimate «,, we can therefore approximately
maximize Q(7y, 2|7y, Xo) in terms of 3, which is given as a 1-truncated vine
(or Markov tree), by minimizing

Z log( j2k;V)7

e={j,k;V}eT

where 7.y = (T — Y17k /\/ (1-— %21)(1 — 72,) is the current estimate of
the partial correlation of Z; and Zj given V using v, = (71,...,7a)". The
solution is given again as a minimum spanning tree in terms of weights log(1—
sz.k;v), which then yields a new estimate 3; of 3 by computing the correlation
matrix implied by a 2-truncated vine as described in Section 2.1.
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By iterating these steps, a sequence of estimates for v and, most impor-
tantly, for X is obtained. Convergence of the modified EM algorithm can be
assumed for example when the change in estimates between two steps falls
below a pre-specified threshold or after a certain number of iterations. The
problem at hand—parameterization of correlation matrices—however pro-
vides a more effective way of convergence control, since the optimal solution
is known. For the unstructured correlation matrix, the MLE of X is R and
ignoring the term with 27, the log-likelihood is

n n
~2 _Za 1
5 og | R 5 (3.13)

The algorithm can therefore be stopped, when no more significant improve-
ment with respect to this upper bound is made; this is more reliable than the
decision based on the relative change in parameters. Monitoring of the log-
likelihood is especially important, since we use a modified EM algorithm with
approximate M-step. Convergence of the ignored part in Q(v;, 2|7y, Xo) to
the constant —(d 4+ 1)/2 was very fast in all numerical examples that we
considered (typically within the first 10-50 iterations).

In general, the above algorithm will converge to a local minimum of the
negative log-likelihood. Depending on the relative magnitudes of the cor-
relations with the latent variable and partial correlations given the latent
variable, the starting point for the modified EM algorithm has an effect. If
the partial correlations tend to be smaller in magnitude than the correlations
or loadings with the latent variable, then the model is a small variation of
the 1-factor model, and loadings from the 1-factor correlation structure pro-
vide a good starting point. If some of the partial correlations are larger in
magnitude, then several different starting points should be used.

For simulated correlation matrices from the combined factor-vine model,
the modified EM algorithm works well, when the partial correlations are not
too large, in that it tends to converge to a local minimum with loadings
that are not far from the “true” loadings, with a Markov tree that can differ
from the original. As d increases past 10, the modified EM algorithm can
more often find the original tree. The reason for this is that for d < 10,
it is easier to find perturbations of the loadings and the tree, and get ap-
proximately the same correlation matrix. The larger partial correlations in
the residual dependence (as represented by the vine) are stable, but the vine
structure for the smaller (more negligible) residual dependence can change
with resampling, as it is mentioned at the end of Section 2.3. For example,
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with d = 5 (the smallest dimension to consider the combined 1-factor and
I-truncated vine model), there are ten correlations and nine parameters, and
the algorithm can more easily reach slightly perturbed correlation matrices
from different starting points.

These ideas can be extended to more general combined factor-vine mod-
els. For a 1-factor model with residual dependence specified in terms of an
(-truncated vine, the general truncated vine algorithm described in Section
3.1 could be used in the modified EM iterations. For a 2-factor model (com-
mon factors, or factors with structured zeros) with residual dependence in one
or more vine levels, the E-step is similar but details are more cumbersome.
The extended models could be considered for larger d when 3d < d(d —1)/2
(number of structured parameters is less than the total number of correla-
tions).

3.4. Goodness-of-fit and model selection

Before moving on to discuss some examples, we like to note that the
goodness-of-fit of a fitted structured correlation matrix can easily be assessed
in terms of the following distance to the observed correlation matrix:

D(Z()|R) :=log |%(0)| — log |R| + tr(2(6) 'R) — dim(R) > 0, (3.14)

where 6 is an estimate of the model parameters 6. (3.14) is 1/n times the
likelihood ratio test statistic of two multivariate normal distributions with
correlation matrices ¥(6) and R, respectively (see, e.g., Kullback (1967)).

This distance D is common in practice and can conveniently be used
for model selection, since it does not depend on an unknown population
correlation matrix. It essentially assesses whether a structured correlation
matrix with fewer parameters, say O(d), is an adequate approximation to
the saturated sample correlation matrix R with d(d — 1)/2 parameters. In
our setting this means that, given a desired degree of closeness to the sample
correlation matrix, models can be extended by adding additional vine trees
and /or factors until this degree of closeness is attained.

To take into account the model complexity, often the Bayesian informa-
tion criterion (BIC) is used for model selection. For a multivariate normal
model with fitted structured correlation matrix, it is given by

BIC(X(8)) := ndlog(27) + nlog |2(8)| + ntr((0) ' R) + log(n) dim(8),
(3.15)
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where dim(@) denotes the number of model parameters in . When compar-
ing different models with the BIC, the model with the smallest BIC value is
considered to provide the best fit. R

From (3.2) and (3.7) it follows that tr(X(0)"'R) = d = dim(R) in
the truncated vine model. Therefore D in (3.14) reduces to D(E(@)]R) =
log |E(§)| —log |R|, and the quantity (log|R| — log |E(§)|)/log |R| may be
used as a measure for the relative distance to the sample correlation ma-
trix. Similarly, the BIC in (3.15) reduces to BIC(%(0)) := nd[log(2) + 1] +

nlog |E(§)\ + log(n) dim(8).

4. Simulation study

Since direct MLE is unrealistic for truncated vines and combined factor-
vine models due to the tree selection problem, we described heuristics to
identify a good truncated vine structure in Section 3.1 as well as a modified
EM algorithm for the combined case in Section 3.3. In order to validate the
approaches, we conducted an extensive Monte Carlo study. For this, we ran-
domly constructed correlation matrices in dimensions d € {5,7,10,15,30}
according to either a 2-truncated vine structure, a 2-factor model or a com-
bined 1-factor and 1-truncated vine model. To each correlation matrix, we
then fitted 2-truncated vines with sequential one-tree-at-a-time selection of
minimum spanning trees (2T /MST), with first tree selected from all possible
l-neighbors of the minimum spanning tree (2T/N), and with first tree se-
lected from the 1000 best spanning trees (2T /bMST), as well as the combined
1-factor and 1-truncated vine model (1F/1T) and the 2-factor model (2F).
The 2-truncated models have 7, 11, 17, 27 or 57 parameters, respectively;
the combined and the factor models have 9, 13, 19, 29 or 59, respectively.
The modified EM algorithm is run for 1000 iterations with Newton-Raphson
method to update the loadings « of the combined factor-vine model, where
the loadings of the best fitting 1-factor model are used as the starting point.
For comparison, the model is also fitted using different starting values: The
loadings of the best fitting 1-factor model as starting values are followed by
the loadings with random noise added, all values equal to 0.2 and three times
completely random starting values. The results according to the best starting
values are denoted by 1F/1T*.

Table 1 reports results for 1000 repetitions in each row. As evaluation
criteria we consider the mean distance D (3.14) to the sample correlation
matrix over all 1000 repetitions as well as the count of the distance D being
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Trwe d 2T/ 2T/ 2T/ 1F/ 1F/ 2F 2T/ 2T/ 2T/ 1F/ 1F/ 2F
MST N bMST 1T 1T* MST N bMST 1T 1T*

1IF/IT 5 0.190 0.076 0.049 0.026 0.003  0.099 0 0 0 50 214 1
7 0508 0273 0.166 0.107 0.020 0.479 0 0 0 48 202 0

10 1112 0.695 0.613 0236 0.037 1.406 0 0 0 148 326 0

15 2145 1.550 1.638 0.214 0.022  3.558 0 0 0 403 507 0

30 5.634 4.598 5153 0.121 0.007 11.034 0 0 0 604 68 0

2T 5 0306 0059 0000 0028 0001 0207 182 472 1000 49 94 1
7 0705 0211 0015 0169 0072 0859 37 144 745 0 0 0

10 1.167 0465 0266 0.663 0392 2.521 2 21 02 0 0 0

15 2.033 1.024 1.097 1.692 1.255 6.540 0 0 5 0 0 0

30 4.653 3.074 3749 5987 4.860 20.585 0 0 0O 0 0 0

2F 5 0.092 0.025 0015 0.005 0.001 0.002 0 0 0 6 17 904
7 0264 0.120 0062 0029 0012 0014 0 0 0 0 1 861

10 0.628 0.331 0.335 0.086 0.037 0.037 0 0 0 2 5 828

15 1.317 0.866 1.124 0.188 0.089  0.091 0 0 0 0 2 691

30 3.271 2592 3189 0458 0.208  0.320 0 0 0 2 3 517

Table 1: Results of the simulation study. Rows 2-6 shows results according to random
factor-vine models, those for random 2-truncated vines are shown in rows 7-11 and those
for random 2-factor models in rows 12-16. Columns 3-8: Mean distance D, as given in
(3.14), to sample correlation matrices over all 1000 repetitions. Columns 9-14: Count of
distance D being smaller than 1078,

smaller than 1078, If the correct model is identified, D should be equal to
0 but may be different from that due to numeric precision. In particular,
in the combined factor-vine model the value of D for the correctly identified
model depends on the estimation accuracy of the loadings <. Therefore we
choose the value 1078 as threshold. As mentioned in Section 3.3, when D is
close to 0, and the dimension d is not much larger than 5, the solution found
from the modified EM algorithm might be a correlation matrix very similar
to the original but with some perturbations in the loadings ~ and in the tree
for residual dependence.

The results can be summarized as follows. The combined factor-vine
model is well fitted using the modified EM algorithm, it seems to do better as
the dimensions gets larger than 10 because near non-identifiability (different
parameters leading to approximately the same correlation matrix) is less
of an issue. On the other hand, the 2-truncated vine obviously does not
well approximate the simulated correlation matrices. When the true model
however is a 2-truncated vine, it becomes clear that sequential one-tree-
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at-a-time selection of minimum spanning trees is not sufficient, especially
in higher dimensions. The heuristics, which consider 1-neighbors and best
spanning trees, strongly improve this sequential selection. The case d = 30
also illustrates that a large number of best spanning trees (at least larger than
1000) may be required to be taken into account in higher dimensions, since 1-
neighbors, which explore the search space differently, here do a better job on
average. Interestingly, the combined factor-vine model also does a reasonably
good job to approximate the correlation matrices simulated according to 2-
truncated vines. Moreover, when different starting values are considered for
the combined model, the fit can be significantly improved. However, none of
the tested choices of starting values uniformly produced better fits than the
others. This means that several different starting values should be taken into
account to verify the fit. Finally, the results indicate that the 2-factor model
is incapable of approximating the correlation matrices simulated according
to the truncated vine and combined factor-vine models. As a result, a factor
model with a small number of factors cannot appropriately account for the
presence of residual dependence; more factors and hence a less parsimonious
model would be needed for this purpose. Conversely, correlation matrices
generated according to a 2-factor model can rather well be approximated by
combined 1-factor and 1-truncated vine models. This is not the case for 2-
truncated vines. To summarize, the combined factor-vine model can better
approximate either a factor model or a truncated vine model than vice versa.

5. Applications

To illustrate the different parameterizations of correlation matrices pre-
sented in the previous sections, we analyze three examples from psychology
and finance. In both areas, factor models are common approaches to ex-
plain dependence among variables: Factor modeling in psychology is used
to identify unobserved character traits of individuals. Relationships between
observed and unobserved variables are then often expressed in terms of struc-
tural equation models (see, e.g., Bollen (1989)). In finance, asset prices and
returns are driven by factors such as the general state of the economy or sec-
torial dependence, but it may be more common to model dependence without
any latent structure. Our model framework allows for both approaches as
well as for a novel combination of the two. We will compare the following 2-
and 3-level models in each example:
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(i) 2-truncated vine with sequential one-tree-at-a-time selection of mini-
mum spanning trees (2T /MST);

(ii) 2-truncated vine with first tree selected from all possible 1-neighbors
of the minimum spanning tree (2T /N);

(iii) 2-truncated vine with first tree selected from the 1000 best spanning
trees (2T /bMST);

(iv) 3-truncated vine with sequential one-tree-at-a-time selection of mini-
mum spanning trees (3T/MST);

(v) 3-truncated vine with first tree selected from all possible 1-neighbors
of the minimum spanning tree and second tree as minimum spanning
tree (3T/N);

(vi) 3-truncated vine with first tree selected from all possible 1-neighbors of
the minimum spanning tree and second tree as first 1-neighbor of the
minimum spanning tree (3T/N1);

(vii) combined 1-factor and 1-truncated vine model (1F/1T), where the
modified EM algorithm of Section 3.3 is run for 10000 iterations to
ensure convergence, which is checked using convergence plots (see the
second example for an illustration; the Newton-Raphson method is used
to obtain the update of 7);

(viii) 2-factor (2F) and 3-factor (3F) models estimated by direct maximum
likelihood estimation.

We analyze two examples from psychology, each having nine variables. Then
we investigate a parsimonious parameterization of the correlation matrix of
the stock returns of all 30 Dow Jones constituents. Finally, a note on the
computing time of the different methods is made.

For all three examples, it is interpretable from the context that the depen-
dence comes predominantly from a latent variable. There is some deviation
of the observed correlation matrix and the fitted correlation matrix based on
the 1-factor structure. With the 2-factor structure, the deviation is somewhat
reduced in the first example (Thurstone data) but not in the second example
(Harman data) or third example (Dow Jones data). The 1F/1T correlation
structure is a better fit than the 2-factor structure in all three examples—
marginally better in the first and much better in the other two. In all three
examples, we also check on the interpretability of the parameter estimates.
The loadings for the 1F/1T model are similar to that of the 1-factor model
and the partial correlations given the latent variables are somewhat smaller
in magnitude, so that the interpretation of residual dependence is reasonable.
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1 2 3 4 5 6 7 8 9
- 0.43 060 053 0.63 038 061 0.56 0.59

0.56 0.50 0.50 0.48 0.59 043 0.59 - 0.63
0.59 044 056 040 0.76 0.33 0.53 0.63 -

1
2 048 - 041 041 043 0.59 043 0.50 0.40
3 0.62 040 - 0.50 0.63 0.36 0.58 0.52 0.53
4 052 040 047 - 0.51 044 0.51 0.46 045
5 0.62 041 0.63 0.52 - 0.37 059 0.60 0.76
6 042 059 036 044 0.32 - 0.38 0.39 0.34
7 058 040 0.59 054 059 0.36 - 0.59 0.53
8
9

Table 2: Thurstone data: The lower triangle shows sample correlations, the upper fitted
correlations according to the combined factor and truncated vine model.

5.1. Thurstone data

The first data set we analyze are measurements of nine cognitive variables
such as ability of classification and number series completion which were
collected from 4175 students Thurstone (1933). The correlation matrix of
the data is available as the data set Thurstone.33 in the R-package psych
Revelle (2012) and shown in the lower left triangle of Table 2.

Table 3 shows the number of parameters, distances D (3.14) to the sam-
ple correlation matrix and BIC values (3.15) for each of the nine different
models taken into account here. For comparison, the number of parameters
of an unstructured parametric correlation matrix estimate is 36 in this case.
For this reason, 2-level models are preferable in terms of model complexity,
since they can reduce the number of parameters by more than a factor of 2.
From the results shown in Table 3, it is obvious that there is an underlying
factor structure, which cannot be accounted for using only truncated vines.
The combined factor-vine model is however clearly superior to a 2-factor
model and does almost as good as the 3-factor model, which has however
more parameters, so that the BIC values are actually quite close. The upper
triangle of Table 2 shows the fitted correlations of the combined model. In
most cases, they are very close to the sample correlations. Furthermore, Fig-
ure 4 illustrates the selected 1-truncated vine tree of the combined model.
Most conditional dependencies are rather small after removal of factor de-
pendence, but there is some stronger dependence left for mathematical and
reading ability, respectively.

Finally, it should be noted that the fit of truncated vines can strongly
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2T/ 2T/ 2T/ 3T/ 3T/ 3T/ 1F/ 2F 3F
MST N bMST MST N NI IT
#par. 15 15 15 21 21 21 17 17 24
D 0.473 0422 0.340 0.284 0.257 0.227 0.079 0.233 0.062
BIC/n 21.19 21.14 21.06 21.02 20.99 20.96 20.80 20.96 20.80

Table 3: Thurstone data: Numbers of parameters, distances D (3.14) to the sample
correlation matrix and scaled BIC values (3.15) for the fitted correlation matrices.

Logical inf.

Analogies

0.13 0.45

Definitions

Arithm. prob.

Antonyms

0.13

Number series compl.

0.18

Artificial lang.

Figure 4: Thurstone data: Selected tree structure in the combined factor-vine model with
partial correlations pjj v as edge labels.

be improved by considering 1-neighbors and best spanning trees. This over-
comes the only locally optimal fit of minimum spanning trees in each step and
corresponds to the results of the simulation study in Section 4. Of course,
the inclusion of an additional tree always increases the goodness-of-fit, i.e.,
decreases the distance D to the sample correlation matrix.

5.2. Harman data

In the second psychology example, we investigate measurements from
nine ability tests of 696 participants Harman (1967). The data set can
again be found in the R-package psych by Revelle (2012), where it is called
Harman.Holzinger. The sample correlations are shown in the lower triangle
of Table 4.

Results from the model fits are reported in Table 5. Conclusions are sim-
ilar to the previous subsection. In this case however, the 2- and 3-truncated
vine models are also superior to the 2-factor model, which indicates that
there may be some unobserved heterogeneity in the data that cannot be ap-
propriately captured using two factors. This is in line with Harman (1967)
who identifies three distinct factors.
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1 2 3 4 5 6 7 8 9
- 0.7 078 043 045 049 024 032 0.30

1

2 0.75 - 0.70 0.52 0.54 0.58 0.23 035 0.33
3 078 072 - 0.47 048 055 0.32 0.37 0.36
4 044 052 047 - 0.82 082 032 0.34 0.34
5 045 053 048 0.82 - 0.74 034 036 0.36
6 051 058 054 0.82 074 - 0.35 0.37 0.37
7 021 023 028 0.33 037 0.35 - 0.39 0.52
8§ 030 032 037 033 036 038 045 0.67
9

0.31 030 037 031 036 038 0.52 0.67 -

Table 4: Harman data: The lower triangle shows sample correlations, the upper fitted
correlations according to the combined factor and truncated vine model.

2T/ 2T/ 2T/ 3T/ 3T/ 3T/ 1F/ 2F 3F
MST N bMST MST N NI IT
#par. 15 15 15 21 21 21 17 17 24
D 0.172 0.144 0.106 0.083 0.048 0.067 0.044 0.727 0.016
BIC/n 19.95 19.92 19.88 19.91 19.88 19.90 19.84 20.52 19.88

Table 5: Harman data: Numbers of parameters, distances D (3.14) to the sample correla-
tion matrix and scaled BIC values (3.15) for the fitted correlation matrices.

The combined 1-factor and 1-truncated vine model takes into account
both factor as well as between-variable dependence. As a result, it is clearly
superior to a 2-factor one and again performs similarly as good as the 3-
factor model: Although the distance to the sample correlation matrix is
larger, the BIC value of the combined model is even smaller, since it is more
parsimonious. It also improves over 2-truncated vine models and even slightly
over 3-truncated ones. Once again, the truncated vine models are clearly
improved through 1-neighbors and best spanning trees. Fitted correlations
of the combined factor-vine model are shown in the upper triangle of Table
4, and the fitted tree after removal of factor dependence on the unobserved
factor is illustrated in the left panel of Figure 5. The tree shows three groups
of three variables each, which are also identified by the 3-factor model.

The convergence of the EM algorithm presented in Section 3.3 is illus-
trated in the right panel of Figure 5, where the log-likelihood of the first
200 EM iterations is shown. Convergence is very fast and the 10000 itera-
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Log-likelihood
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Figure 5: Harman data: Left panel: Selected tree structure in the combined factor-
vine model with fitted partial correlations pjy as edge labels. Right panel: Fitted
log-likelihoods of the first 200 EM iterations. The dashed line gives the best obtainable
log-likelihood (3.13).

tions would not have been needed to ensure convergence. The jumps in the
log-likelihoods in the first 70 iterations correspond to changes in the selected
edges of the Markov tree.

5.3. Dow Jones returns

We also give a relevant example from finance and analyze the correlations
of n = 251 stock returns of all d = 30 Dow Jones constituents in the year
2011. Financial log returns of a single asset are defined as y; = log(P;/Pi—1)
for day t, where { P} is the time series of prices. It is known (e.g., Jondeau
et al. (2007)) that returns are heavier tailed than normal and commonly
used distributions for fitting are Student’s t or skew-t. Over time, {y;} is
nearly serially uncorrelated but the absolute returns have some serial au-
tocorrelations so that generalized autoregressive conditional heteroscedastic
(GARCH) models are often used. For illustration here, we are mainly in-
terested in the dependence structure, so for each asset we just empirically
transformed to normal. Suppose we have observations (yi1, ..., %) of re-
turns on d assets on day ¢ for : = 1,...,n. The jth variable is converted to
ranks Ry , ..., R,; with the rank of 1 for the smallest and n for the largest
value. Then we convert to normal scores with z;; = ®~!([R;;+a]/[n+2a+1])
for appropriately chosen a near —0.5 so that " z;; = 0and £ 37" | z; =1
for each j.
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2T/ 2T/ 2T/ 3T/ 3T/ 3T/ 1F/ 2F 3F
MST N bMST MST N NI IT
#par. 57 57 57 84 84 84 59 59 &7
D 4771 4.603  4.622 3.839 3.598 3.596 2.147 4.048 3.118
BIC/n 57.73 57.56 57.58 57.39 57.15 57.15 55.15 57.05 56.73

Table 6: Dow Jones data: Numbers of parameters, distances D (3.14) to the sample
correlation matrix and scaled BIC values (3.15) for the fitted correlation matrices.

The numbers of parameters, distances D (3.14) to the sample correlation
matrix and BIC values (3.15) are shown in Table 6 for all model fits. The
reported number of parameters should be compared to the 435 parameters
of an unstructured parametric correlation matrix estimate. Therefore, also
3-level models constitute a strong improvement in the number of parameters.

For this data set, the combined 1-factor and 1-truncated vine model is
overall best among all models under consideration, in particular it is even
clearly superior to the 3-factor model, which was not the case in the two
psychology examples. This shows that stock returns are driven by an overall
factor, which may be interpreted as the general state of the economy, while
remaining dependence can be explained best through between-stock depen-
dence. In particular, the selected tree after removal of factor dependence
(not shown here) identifies groups of stocks from common sectors such as I'T
or financials. Both the factor and the truncated vine model are not able to
take these characteristics into account appropriately.

Note that the distance D reported for the best 2-truncated vine based
on 1-neighbors is smaller than for the one based on the 1000 best spanning
trees. This illustrates that the best 1-neighbor of the minimum spanning tree
need not necessarily be among the very best spanning trees and shows that
a possibly large number of best spanning trees is required to find a model
improvement, as it was also observed in the simulation study in Section 4.

5.4. Computing time

While the estimation of loadings for factor models and one-tree-at-a-time
selection of minimum spanning trees for truncated vines is very fast in terms
of computing time (less than one second in nine dimensions, less than 10
seconds in 30 dimensions), the heuristics for finding good truncated vine
models (see Section 3.1) and the modified EM algorithm to fit the combined
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1-factor and 1-truncated vine model (see Section 3.3) are computationally
more demanding.

In the two nine-dimensional psychology examples the neighbor-based fit of
the Models (ii), (v) and (vi) took only 7-8 seconds using our implementation
in R on a 2.6Ghz AMD Opteron. For the 30-dimensional Dow Jones data set,
this however increased to 42-46 minutes, since also the number of possible
1-neighbors increased from 28 to 406. This is similar to the running time
for the 2-truncated vine based on the 1000 best spanning trees: in the 30-
dimensional example it was 46 minutes. This is unlike the nine-dimensional
examples, where the running time was much slower (3.5 minutes) than for
1-neighbors. This is because there are only 28 1-neighbors to be investigated
in nine dimensions, while the 1000 best spanning trees only represent 0.02%
of the total number of trees on nine nodes.

Our implementation of the modified EM algorithm for the combined
factor-vine model also proved to be reasonably fast. Although we ran it
for 10000 iterations it only took 2.5 minutes in the nine-dimensional case
and less than 8 minutes for the 30-dimensional Dow Jones data set. Choos-
ing fewer iterations such as 1000, for which we also could have assumed
convergence, therefore even gets the running time under one minute.

6. Conclusion and outlook

In this paper, we have initiated the study of combined factor-vine models
as another parsimonious dependence structure that is an alternative to the
factor and truncated vine structures. The structure has conditional or resid-
ual dependence given latent variables, and this is interpretable in various
contexts in psychometrics and finance. Because the exact form of the resid-
ual dependence is not specified a priori, computational methods of SEMs do
not apply and we develop an efficient modified EM algorithm.

This paper is the first to have data examples that compare the depen-
dence models of factor, truncated vine and combined factor-vine models.
The examples show the better fit of the combined factor-vine model, so that
this direction of research should be pursued further. Here, we have focused
on Gaussian dependence but the motivation and planned future research are
the copula versions with this dependence structure but with the capability
of handling tail dependence and tail asymmetry.

The theory and applications of vine copulas or the pair-copula construc-
tion has been well developed; see Kurowicka and Joe (2011), Brechmann et al.
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(2012), DiBmann et al. (2013). The theory in this paper can provide alterna-
tive algorithms in the sequential fitting of a combined factor-vine structure
with a bivariate copula for each edge of the vine. After finding some well-
fitting models based on an assumption of a multivariate normal copula, we
can convert to a parametrization with correlations in the first tree and partial
correlations in subsequent trees, and then extend to a vine copula model by
replacing each correlation by a bivariate copula and each partial correlation
by a bivariate copula applied to conditional distributions. For example, in
finance applications, where it is important to account for tail dependence
(more dependence in the joint tails than would be obtained with the multi-
variate normal copula), the bivariate copulas could be chosen to have upper
and /or lower tail dependence.

Future research therefore includes the following. We will compare our
vine tree selection approaches to previously proposed approaches; in par-
ticular, to those by Diffmann et al. (2013) who maximize the sum of ab-
solute Kendall’s 7, and by Kurowicka (2011) based on partial correlations.
In light of the work on truncation by Brechmann et al. (2012), the criterion
(log |R|—log |%(6)])/ log | R] (see Section 3.4) can be used for truncation level
selection: include vine trees, using model selection techniques as discussed
in Section 3.1, until a pre-specified degree of closeness to the empirical cor-
relation matrix is attained. In addition, the copula version of the combined
factor-vine model proposed in this paper will be investigated in compari-
son to truncated vine copulas as well as to copula-based factor models as
proposed by Krupskii and Joe (2013).

The factor model with residual dependence is intuitively plausible for the
applications in this paper as well as others. The model fits so well in com-
parison with 2- and 3-level truncated vines and 3-factor models that also the
general combined model, with arbitrary number of factors and vine levels, is
definitely worthy of further study. For applications leading to a parsimonious
dependence structure, we expect that two to four combined factors/vine lev-
els will often be adequate. For models with two or more factors, we might
also consider ‘confirmatory’ or ‘structured’ factors, where non-zero loadings
are decided based on the context of the application. For example, for finan-
cial portfolios that include stocks and bonds, a 2-factor model with residual
dependence might have a factor for stocks only and another factor for bonds
only, and dependent ‘residuals’ satisfying a truncated vine structure.

With these factor models with residual dependence, this paper is the first
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to make connections between SEMs and truncated vines. This connection can
be developed further for linear or nonlinear SEMs where the path diagram has
some specified edges for latent variables to observed variables plus additional
unspecified edges for the residual dependence.
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Appendix A. Maximum likelihood estimation of 2-truncated vine

We consider the log-likelihood L;(¢1, ¢2) given in (3.5), where ¢); =1 —
O} — @3 — 20519520, and p = Ty, 1, is known from earlier in the sequence.
Let the MLESs be pjk,,, Djky;» @, P51, Pj2 and ¢;, and let ;5 = 25 —@j12i5,, —
j2%ik,y; and €ij = Zij — @ﬂzi,klj - @22i,k2j.

Differentiation of (3.5) with respect to ¢;,, (m = 1,2) followed by multi-
plication by ¢} leads to:

1,007, ! 2 0
_5 j aﬁogm + wj (rjkmj - Pjm — 90.7',37m74k1jk2j) + % ZZ: €; ma m = 17 27
(A.1)
where 902
J
Do —20jm — 25,3 mPliska; s

and the middle terms come from
n

n

1 1

- > €ijZikn, = - > (215 = Pi1Zik,; = PiaZika; ) ik
i=1 =1

Assume by induction that the MLE of py, &, i &, ;x,; based on the previous
step, so that
~ (pjkzj - pjk1jrk1jk2j)

VA= )= )

Olj—
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Setting the two equations in (A.1) to 0 then leads to

~ -~ 1
2/~ ~ 2 ~ ~ ~ ~ ~
V5 (D1 + PjaTky k) + 05 (Tjry; — @j1 — PjalThjhay) — (D1 + @jzrkljkw)ﬁ e; =0,

~ ~

SR PO SR 1~
¢?(¢j2 + @jlrklykzj) + wjz'(rﬂwj — Y2 — gpjlrkljk?j) - (Spﬂ + Spjlrkquj)ﬁ Z e?j = 07

=1
which, after canceling some terms, is equivalent to
1 n
w?rjklj = (@jl + @j2rk1jk2j)ﬁ Zé\?ﬁ (A2>
i=1
1 n
o, ~ ~ ~2
YT kg = (Pj2 + @jl?“kljkgj)ﬁ Z Cij- (A.3)
i=1
Standard results for regression yield 1@2 = LY €, since ¢? is the
variance of Zi; — ©j1Zik,; — Pj2Zik,;- From the equation for ¢;; (see (2.4)),
we get Pig, = Dj1 + Pjolkyky, S0 that from (A.2), 7. = pjr,. Next,

from (A.3) and the equations for ¢;; and @jo (see (2.4)), we get 1, =
@JQ + @jlrklj]@j = @ﬂ + (Tjk’lj - @j2rk1jk2j)rk1jk2j or

(Pjhay = Tika,Thighoy )/ (1= T py,) = P2 = aj\/(l — 15 ) (L= T3 ,) -

Hence
~ Tikoy — Tjki;Tkjko;

= = Tjkojikij»
VA=) =r )

the sample partial correlation, and pj,; = 7,
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