Quantum bosonic Fourier codes

how to design codes with nice logical gates?

Anthony Leverrier Inria

Enhanced quantum information processing 2025 Munich – 7 October 2025

A. Leverrier 7 Oct 2025 1/17

Basics of fault tolerance

- goal: compute on data protected by quantum error correction
- ▶ find "nice" implementations of logical gates
 - low-depth circuits, e.g. transversal gates
 - ▶ natural physical operations, *e.g.* linear optics (beasmplitters, phase-shifts)
 - "continuous"?

A. Leverrier 7 Oct 2025 2 / 1

A natural problem

- the logical system:
 - ightharpoonup a qudit \mathbb{C}^{d}
 - ightharpoonup a logical group $G \subseteq SU(d)$ e.g., single-qubit Clifford group
- the physical system
 - ▶ a physical space *H*: Fock space, n-qudit space...
 - ightharpoonup a nice physical representation $g \mapsto \rho(g)$
- design an encoding $\mathcal{E}: \mathbb{C}^d \to \mathcal{H}$ where logical g is implemented with $\rho(g)$?

$$\mathcal{E}(g|\psi\rangle) = \rho(g)\mathcal{E}(|\psi\rangle)$$

3/17

A. Leverrier 7 Oct 2025

A natural problem

- ▶ the logical system:
 - ightharpoonup a qudit \mathbb{C}^{d}
 - ightharpoonup a logical group $G \subseteq SU(d)$ e.g., single-qubit Clifford group
- the physical system
 - ▶ a physical space *H*: Fock space, n-qudit space...
 - ightharpoonup a nice physical representation $g \mapsto \rho(g)$ e.g., Gaussian unitaries, transversal gates $\rho(g) = g^{\otimes n}$
- design an encoding $\mathcal{E}: \mathbb{C}^d \to \mathcal{H}$ where logical g is implemented with $\rho(g)$?

$$\mathcal{E}(\mathbf{g}|\psi\rangle) = \rho(\mathbf{g})\mathcal{E}(|\psi\rangle)$$

3/17

A. Leverrier 7 Oct 2025

A natural problem

- ▶ the logical system:
 - ▶ a qudit ℂ^d
 - ▶ a logical group $G \subseteq SU(d)$ e.g., single-qubit Clifford group
- the physical system
 - ▶ a physical space *H*: Fock space, n-qudit space...
 - ▶ a nice physical representation $g \mapsto \rho(g)$
 - e.g., Gaussian unitaries, transversal gates $\rho(g)=g^{\otimes n}$
- design an encoding $\mathcal{E}: \mathbb{C}^d \to \mathcal{H}$ where logical g is implemented with $\rho(g)$?

$$\mathcal{E}(g|\psi\rangle) = \rho(g)\mathcal{E}(|\psi\rangle)$$

3/17

A. Leverrier 7 Oct 2025

Some limitations

- ► Eastin-Knill: cannot get a universal gate set with transversal implementation that corrects all relevant errors
- baby version:
 - ightharpoonup cannot take G infinite and ρ continuous
 - ▶ otherwise, pick g, g' close
 - then $\rho(g)$ and $\rho(g')$ are also close (compared to experimental precision)
 - $\implies \rho(g)\mathcal{E}(|\psi\rangle)$ and $\rho(g')\mathcal{E}(|\psi\rangle)$ cannot both be prepared with arbitrary precision

▶ possible to do approximate error correction: *e.g.* Faist *et al.* PRX 2020, Woods,

A. Leverrier 7 Oct 2025

4/17

Some limitations

- ► Eastin-Knill: cannot get a universal gate set with transversal implementation that corrects all relevant errors
- baby version:
 - ightharpoonup cannot take G infinite and ρ continuous
 - ▶ otherwise, pick g, g' close
 - then $\rho(g)$ and $\rho(g')$ are also close (compared to experimental precision)
 - $\Rightarrow \rho(g)\mathcal{E}(|\psi\rangle)$ and $\rho(g')\mathcal{E}(|\psi\rangle)$ cannot both be prepared with arbitrary precision

possible to do approximate error correction: e.g. Faist et al. PRX 2020, Woods, Alhambra Quantum 2020

A. Leverrier 7 Oct 2025

General recipe (Denys, AL, PRL 2024)

- ightharpoonup group $G \subseteq U(d)$
- ightharpoonup nice physical unitary representation ρ on \mathcal{H}
- goal: $\mathcal{E}(g|\psi\rangle) = \rho(g)\mathcal{E}(|\psi\rangle)$
- ▶ pick any logical state $|\Omega\rangle \in \mathbb{C}^d$ and any physical state $|\Phi\rangle \in \mathcal{H}$ (e.g. vacuum, coherent state)

Encoding map

$$\begin{array}{ccc} \mathcal{E}: & \mathbb{C}^{\mathrm{d}} & \rightarrow & \mathcal{H}_{\mathrm{P}} \\ & |\psi\rangle & \mapsto & \mathcal{E}(|\psi\rangle) \propto \sum_{\mathrm{g} \in \mathrm{G}} \langle \Omega | \mathrm{g}^{\dagger} | \psi \rangle \, \rho(\mathrm{g}) | \textcolor{red}{\Phi} \rangle \end{array}$$

A. Leverrier 7 Oct 2025 5 / 17

The case of bosonic codes

Pick

- $|\Phi\rangle = |\vec{\alpha}\rangle$ a (single-mode or multimode) coherent state
- ightharpoonup
 ho(g): Gaussian passive unitary: $\rho(g)|\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$

$$\mathcal{E}(|\psi\rangle) \propto \sum_{\mathbf{g} \in G} \langle \Omega | \mathbf{g}^\dagger | \psi \rangle | \mathbf{g} \vec{\alpha} \rangle$$

is a superposition of coherent states.

- ► GKP: Weyl-Heisenberg group and displacements
- cat codes: cyclic group and phase shifts

6/17

The case of bosonic codes

Pick

- $|\Phi\rangle = |\vec{\alpha}\rangle$ a (single-mode or multimode) coherent state
- $\rho(g)$: Gaussian passive unitary: $\rho(g)|\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$

$$\mathcal{E}(|\psi\rangle) \propto \sum_{g \in G} \langle \Omega | g^{\dagger} | \psi \rangle | g \vec{\alpha} \rangle$$

is a superposition of coherent states.

⇒ generalization of quantum spherical codes (Jain et al, Nat. Phys. 2024), but with nice gate sets.

one can recover the usual suspects:

- ► GKP: Weyl-Heisenberg group and displacements
- cat codes: cyclic group and phase shifts

The case of bosonic codes

Pick

- $|\Phi\rangle = |\vec{\alpha}\rangle$ a (single-mode or multimode) coherent state
- $\rho(g)$: Gaussian passive unitary: $\rho(g)|\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$

$$\mathcal{E}(|\psi\rangle) \propto \sum_{g \in G} \langle \Omega | g^{\dagger} | \psi \rangle | g \vec{\alpha} \rangle$$

is a superposition of coherent states.

⇒ generalization of quantum spherical codes (Jain et al, Nat. Phys. 2024), but with nice gate sets.

one can recover the usual suspects:

- ▶ GKP: Weyl-Heisenberg group and displacements
- ► cat codes: cyclic group and phase shifts

Elementary representation theory

Representation \cong sum of irreducible representations

$$\rho(g) = U\left(\bigoplus_{\lambda \in \hat{G}} \lambda(g) \otimes \mathbb{1}_{M_{\lambda}}\right) U^{\dagger}$$

- U intertwiner
- \triangleright λ : irreducible representation of G
- ► M_{λ} : multiplicity of λ in ρ (g)

One can rewrite the encoding as an isometry

$$\mathcal{E} : \mathbb{C}^{d} \to \mathcal{H}$$
$$|\psi\rangle \mapsto U|\psi\rangle|\phi\rangle$$

for some $|\phi\rangle \in \mathcal{M}$, multiplicity space associated to $\lambda \in \hat{G}$.

⇒ information encoded in an irreducible representation of G

Beyond bosonic codes

The construction is very general:

$$\mathcal{H}_{\mathrm{L}} = \mathbb{C}^{\mathrm{d}}, \qquad \mathcal{H}_{\mathrm{P}} = (\mathbb{C}^{\mathrm{d}'})^{\otimes \mathrm{n}}$$

Natural choice for the physical representation $\rho(g)$:

ightharpoonup transversal gates $\rho(g) = g^{\otimes n}$

see works of Kubischta, Teixeira PRL 23, PRL 24

Code [5, 1] with transversal 2T

- ightharpoonup 2T group: binary tetrahedral group, 2T = $\langle Z, H \rangle$ = (Paulis + Hadamard), |2T| = 24
- choose the irrep $\rho_5(Z) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $\rho_5(H) = \frac{e^{i\pi/4}}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$
- $\rho(\mathbf{g}) = \rho_5(\mathbf{g})^{\otimes 5}$
- encoding: $\mathcal{E}(|\psi\rangle) = U|\psi\rangle|\phi\rangle$, for some $|\phi\rangle \in \mathcal{M}_5 \cong \mathbb{C}^6$
- can we get an encoding that corrects errors?
- asked chatGPT 5 to write a Python script that searches this space for encodings that satisfy the Knill-Laflamme conditions for single-qubit errors
 - \implies recovered a stabilizer code isomorphic to the [5, 1, 3]

Code [5, 1] with transversal 2T

- ightharpoonup 2T group: binary tetrahedral group, 2T = $\langle Z, H \rangle$ = (Paulis + Hadamard), |2T| = 24
- $\qquad \text{choose the irrep } \rho_5(Z) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad \rho_5(H) = \frac{e^{i\pi/4}}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$
- $\rho(\mathbf{g}) = \rho_5(\mathbf{g})^{\otimes 5}$
- encoding: $\mathcal{E}(|\psi\rangle) = U|\psi\rangle|\phi\rangle$, for some $|\phi\rangle \in \mathcal{M}_5 \cong \mathbb{C}^6$
- can we get an encoding that corrects errors?
- asked chatGPT 5 to write a Python script that searches this space for encodings that satisfy the Knill-Laflamme conditions for single-qubit errors
 - \implies recovered a stabilizer code isomorphic to the [5, 1, 3]

Code [5, 1] with transversal 2T

- ▶ 2T group: binary tetrahedral group, $2T = \langle Z, H \rangle = (Paulis + Hadamard), |2T| = 24$
- choose the irrep $\rho_5(Z) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $\rho_5(H) = \frac{e^{i\pi/4}}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$
- $\rho(\mathbf{g}) = \rho_5(\mathbf{g})^{\otimes 5}$
- encoding: $\mathcal{E}(|\psi\rangle) = U|\psi\rangle|\phi\rangle$, for some $|\phi\rangle \in \mathcal{M}_5 \cong \mathbb{C}^6$
- can we get an encoding that corrects errors?
- asked chatGPT 5 to write a Python script that searches this space for encodings that satisfy the Knill-Laflamme conditions for single-qubit errors
 - \implies recovered a stabilizer code isomorphic to the [5, 1, 3]!

Code [7, 1] with transversal Clifford group

20 group: binary octahedral group (aka single-qubit Clifford group)

$$2O = \langle S, H \rangle, \qquad |2O| = 48$$

$$\rho_7^{\otimes 7} = \rho_6^{\oplus 7} \oplus \rho_7^{\oplus 15} \oplus \rho_8^{\oplus 21}$$

 ρ_6, ρ_7 : dimension 2, ρ_8 : dimension 8; encode information in ρ_7

$$\rho(g) = \rho_7(g)^{\dagger \otimes 7} \implies \text{standard Steane code} \quad [7, 1, 3]$$

$$\rho(g) = \rho_7(g)^{\otimes 7}$$
 \Longrightarrow Steane code with different labeling of the logical states

again, need to optimize a state in the multiplicity space \mathbb{C}^{15} to recover codes with large distance not clear whether there exists a systematic way to guess which state $|\Phi\rangle$ yields a code with good error correction performance. Found some non stabilizer one with ChatGPT, but didn't investigate further.

attempts at finding codes with good distance: Kubischta, Teixeira PRL 24, Aydin, Albert, Barg 25

A. Leverrier

Code [7, 1] with transversal Clifford group

2O group: binary octahedral group (aka single-qubit Clifford group)

$$2O = \langle S, H \rangle, \qquad |2O| = 48$$

$$\rho_7^{\otimes 7} = \rho_6^{\oplus 7} \oplus \rho_7^{\oplus 15} \oplus \rho_8^{\oplus 21}$$

 ρ_6, ρ_7 : dimension 2, ρ_8 : dimension 8; encode information in ρ_7

$$\rho(g) = \rho_7(g)^{\dagger \otimes 7} \implies \text{standard Steane code} \quad [7, 1, 3]$$

$$\rho(g) = \rho_7(g)^{\otimes 7}$$
 \Longrightarrow Steane code with different labeling of the logical states

again, need to optimize a state in the multiplicity space \mathbb{C}^{15} to recover codes with large distance not clear whether there exists a systematic way to guess which state $|\Phi\rangle$ yields a code with good error correction performance. Found some non stabilizer one with ChatGPT, but didn't investigate further.

attempts at finding codes with good distance: Kubischta, Teixeira PRL 24, Aydin, Albert, Barg 25

A. Leverrier 7 Oct 2025 10 / 17

Fourier codes

A. Leverrier 7 Oct 2025 11 / 17

Fourier codes

An interesting case: ρ acts like the left-regular representation

- physical states indexed by group elements $|\psi_{g}\rangle$
- left regular representation: $\forall g, h \in G$,

$$\rho(g)|\psi_{\rm h}\rangle = |\psi_{\rm gh}\rangle$$

 \implies intertwiner $U = F_{G}^{\dagger}$, the inverse Fourier transform

$$F_G := \sum_{g \in G} \sum_{\lambda \in \hat{G}} \sqrt{\frac{d_{\lambda}}{|G|}} \sum_{\ell, m=1}^{d_{\rho}} \langle \ell | \lambda(g) | m \rangle |\lambda, \ell, m \rangle \langle g|$$

An example: Bosonic Fourier codes

bosonic encoding and ρ = passive Gaussian operations

$$\rho(g)|\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$$

define an orthonormal basis indexed by group elements:

$$|\psi_{\mathrm{g}}\rangle := \sum_{\mathrm{h}\in\mathrm{G}} [\mathsf{\Gamma}^{-1/2}]_{\mathrm{h},\mathrm{g}} |\mathrm{h}\boldsymbol{lpha}\rangle \qquad \mathsf{\Gamma}_{\mathrm{h},\mathrm{g}} := \langle \mathrm{h}\alpha |\mathrm{g}\alpha \rangle$$

encoding:

$$\mathcal{E}(|\ell,m\rangle) = F_G^\dagger |\lambda,\ell,m\rangle = \sum_{g \in G} [\Gamma^{-1/2} F_G^\dagger]_{g,\lambda\ell m} |g\boldsymbol{\alpha}\rangle$$

encodes a logical and a multiplicity/auxiliary qubit: $|\ell\rangle$, $|m\rangle \in \mathbb{C}^d$

2-mode Fourier cat code: $G = \langle X, Z \rangle$ with Gaussian unitaries

• pick $|\alpha\rangle = |\alpha, i\alpha\rangle$ with $\alpha = \sqrt{\frac{\pi}{2}}$

$$|\widehat{0,0}\rangle = |1_{\alpha}\rangle|0_{\mathrm{i}\alpha}\rangle, \quad |\widehat{0,1}\rangle = |1_{\mathrm{i}\alpha}\rangle|0_{\alpha}\rangle, \quad |\widehat{1,0}\rangle = |0_{\mathrm{i}\alpha}\rangle|1_{\alpha}\rangle, \quad |\widehat{1,1}\rangle = |0_{\alpha}\rangle|1_{\mathrm{i}\alpha}\rangle$$

- state preparation is ok: product states of cat states $|m_{\alpha}\rangle \propto |\alpha\rangle + (-1)^{m}|-\alpha\rangle$
- ▶ Pauli logical operations: SWAP for X, $(-1)^{n_2}$ for Z
- ▶ S and CZ gates with Kerr interactions (standard for bosonic codes)
- ightharpoonup $e^{i\theta Z_L Z_M}$: quantum Zeno effect
- ▶ more interesting: Hadamard ⇒ universal gate set

A. Leverrier 7 Oct 2025 14 / 17

Hadamard gate on the Fourier cat code

- ▶ applying $\rho(H)$ doesn't give a logical operation since $H \notin G$
- ▶ but it's close: H_LH_M + constellation rotation
 - ⇒ code deformation
- ▶ holds more generally for gates in N(G) (group normalizer)
- one can get H_L via $SHSHS = e^{i\pi/4}H$

$$H_{L} = S_{L}(H_{L}H_{M})S_{L}(H_{L}H_{M})S_{L}$$

hint from ChatGPT, but Ulysse tells me this was in the forrelation paper of Aaronson-Ambainis 2015

A. Leverrier 7 Oct 2025 15 / 17

Hadamard gate on the Fourier cat code

- ▶ applying $\rho(H)$ doesn't give a logical operation since $H \notin G$
- ▶ but it's close: H_LH_M + constellation rotation
 - ⇒ code deformation
- ▶ holds more generally for gates in N(G) (group normalizer)
- one can get H_L via $SHSHS = e^{i\pi/4}H$

$$H_{L} = S_{L}(H_{L}H_{M})S_{L}(H_{L}H_{M})S_{L}$$

▶ hint from ChatGPT, but Ulysse tells me this was in the forrelation paper of Aaronson-Ambainis 2015

A. Leverrier 7 Oct 2025 15 / 17

Bonus: implementation should be ok

Stabilizers, Lindblad operators, logical states of cat-type bosonic codes

	4-legged cat	2-repetition cat	pair-cat	2-mode Fourier
Stabilizers	$\hat{n} \mod 2$	$\hat{n}_1 - \hat{n}_2 \hspace{0.2cm} \text{mod} \hspace{0.1cm} 2$	$\hat{\mathrm{n}}_1 - \hat{\mathrm{n}}_2$	$\hat{\mathrm{n}}_1 - \hat{\mathrm{n}}_2 \hspace{0.2cm}mod\hspace{0.1cm} 2$
Lindblad operators	$\hat{a}^4 - \alpha^4$	$\hat{a}_1^2 - \alpha^2$ $\hat{a}_2^2 - \alpha^2$	$\hat{a}_1^2\hat{a}_2^2-\alpha^4$	$\hat{a}_{1}^{4} - \alpha^{4} \ \hat{a}_{1}^{2} \hat{a}_{2}^{2} + \alpha^{4}$
$ 0\rangle_{ m L}$	$ 0_{\alpha}\rangle$	$ 0_{\alpha}\rangle 0_{\alpha}\rangle$	$\int_0^{\pi} 0_{\alpha e^{i\theta}}\rangle 0_{\alpha e^{-i\theta}}\rangle d\theta$	$ 1_{\alpha}\rangle 0_{\mathrm{i}\alpha}\rangle, 1_{\mathrm{i}\alpha}\rangle 0_{\alpha}\rangle$
$ 1 angle_{ m L}$	$ 0_{i\alpha}\rangle$	$ 1_{\alpha}\rangle 1_{\alpha}\rangle$	$\int_{0\pi}^{\pi} 0_{\alpha e^{i\theta}}\rangle 0_{\alpha e^{-i\theta}}\rangle d\theta$ $\int_{0}^{\pi} 1_{\alpha e^{i\theta}}\rangle 1_{\alpha e^{-i\theta}}\rangle d\theta$	$\left 0_{i\alpha}\right\rangle \left 1_{\alpha}\right\rangle ,\left 0_{\alpha}\right\rangle \left 1_{i\alpha}\right\rangle$

A. Leverrier 7 Oct 2025 16 / 17

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes)
- ▶ Fourier codes: reasonably nice universal gate set with the help of the multiplicity qubit

Many questions

- how to find the codes with good parameters?
- general approach to get a universal gate set (still ad hoc at the moment)?

Thanks!

A. Leverrier 7 Oct 2025 17 / 17

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes)
- ▶ Fourier codes: reasonably nice universal gate set with the help of the multiplicity qubit

Many questions

- how to find the codes with good parameters?
- general approach to get a universal gate set (still ad hoc at the moment)?

Thanks!

A. Leverrier 7 Oct 2025 17 / 17