Random unitaries in extremely low depth

Jonas Haferkamp

Based on work with:

Thomas Schuster, Hsin-Yuan Huang

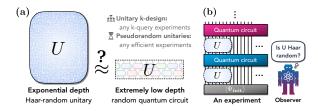
A quantum revolution!

- Progress in the control of quantum many-body systems!
- ► Characterize/benchmark properties of quantum systems.

Random unitaries

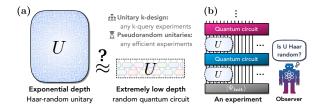
Designs and pseudorandom unitaries

► Random unitaries are too expensive!



Designs and pseudorandom unitaries

► Random unitaries are too expensive!



- ▶ Unitary k-design: Indistinguishable from k copies of U.
- ▶ PRU's: Indistinguishable in polynomial time.

Approximate unitary k-designs

$$(1-\varepsilon)\,\Phi_H\,\leq\,\Phi_{\mathcal{E}}\,\leq\,(1+\varepsilon)\,\Phi_H,$$

where

$$\Phi_{\mathcal{E}}(A) := \mathbb{E}_{U \sim \mathcal{E}} \left[U^{\otimes k} A U^{\dagger, \otimes k} \right].$$

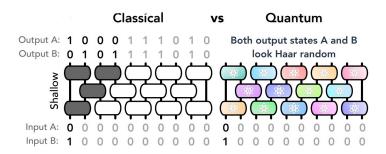
▶ CP ordering: $A \leq B$ if B - A is completely positive.

Approximate designs in extremely low depth

Theorem

Approximate unitary designs can be generated in $O(k \log(n))$ depth on any geometry, including 1D lines. For k = 3, the gates can be chosen to be Cliffords.

How about classical circuits?

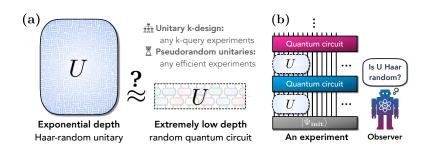


► Classical circuits require linear depth to be approximate 2-wise independent.

PRU's in extremely low depth

Theorem

PRU's can be generated in depth $\omega(\log(n))$ on any geometry, including a 1D line.



Optimality of our results

Theorem

Approximate 2-designs require $\Omega(\log(n))$ depth.

▶ Lower bound on anticoncentration in any basis.

Theorem

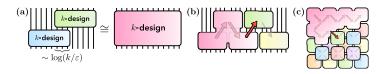
PRU's require $\omega(\log(n))$ depth.

▶ Learning is efficient in depth $O(\log(n))$.

Huang, Liu, Broughton, Kim, Anshu, Landau, McClean, STOC 2023

Proof sketch

Random unitaries from gluing



Theorem

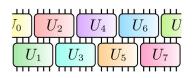
Local patches with $\xi \ge \log_2(nk)$ qubits form an approximate design.

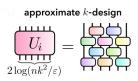
Approximate designs from gluing

Use random quantum circuits in the blocks:

Theorem

Coarse-grained random quantum circuits generate ε -approximate designs in depth $O(\operatorname{polylog}(k)(nk + \log(1/\varepsilon)))$.



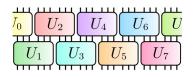


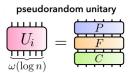
PRUs from gluing

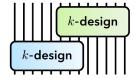
Use "PFC" in the blocks:

Theorem

For P a pseudorandom permutation on the computational basis, F a pseudorandom diagonal unitary and C a uniformly random Clifford unitary, PFC is a PRU. The depth of PFC is poly(n).

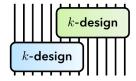






Expand blocks in permutations:

$$\Phi_{H}(A) \equiv \mathbb{E}_{U \sim \mathcal{E}_{H}}[U^{\otimes k} A (U^{\dagger})^{\otimes k}] = \sum_{\sigma, \tau \in S_{k}} \operatorname{Tr}(A \sigma^{-1}) \operatorname{Wg}(\sigma \tau^{-1}; 2^{\xi/2}) \tau.$$



Expand blocks in permutations:

$$\Phi_{H}(A) \equiv \mathbb{E}_{U \sim \mathcal{E}_{H}}[U^{\otimes k} A (U^{\dagger})^{\otimes k}] = \sum_{\sigma, \tau \in S_{k}} \operatorname{Tr}(A \sigma^{-1}) \operatorname{Wg}(\sigma \tau^{-1}; 2^{\xi/2}) \tau.$$

Exploit approximate orthogonality of permutations:

$$||G - \mathbb{1}_{k! \times k!}||_{\infty} \le \frac{k^2}{2^{\xi/2}}, \qquad G_{\pi,\sigma} \equiv \frac{1}{2^{\xi/2}} \operatorname{Tr}[\pi\sigma].$$

Harrow, Lett. in Math. Phys. 2024

$$\Phi_H pprox \sum_{\pi \in \mathcal{S}_k} |\pi
angle \langle \pi|, \qquad \langle \pi| \equiv rac{1}{2^{\xi/4}} \mathrm{Tr}[\piullet]$$

$$\Phi_H pprox \sum_{\pi \in S_c} |\pi\rangle\langle\pi|, \qquad \langle\pi| \equiv \frac{1}{2^{\xi/4}} \mathrm{Tr}[\pi ullet]$$

$$\Phi_{H,1,2}\circ\Phi_{H,2,3}=\sum_{\pi,\sigma\in S_k} =\sum_{\pi,\sigma\in S_k} =\sum_{\pi,\sigma\in S_k}$$

$$\Phi_{H} \approx \sum_{\pi \in S_{k}} |\pi\rangle \langle \pi|, \qquad \langle \pi| \equiv \frac{1}{2^{\xi/4}} \mathrm{Tr}[\pi \bullet]$$

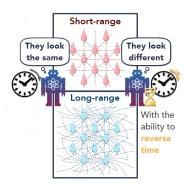
$$\Phi_{H,1,2} \circ \Phi_{H,2,3} = \sum_{\pi,\sigma \in S_{k}} |\pi\rangle \langle \pi|, \qquad \langle \pi| \equiv \frac{1}{2^{\xi/4}} \mathrm{Tr}[\pi \bullet].$$

▶ Use approximate orthogonality again:

$$\Phi_{H,1,2} \circ \Phi_{H,2,3} \approx \sum_{\pi \in S_k} \boxed{\overline{\pi}} \boxed{\overline{\pi}} = \sum_{\pi \in S_k} \boxed{\overline{\pi}} \approx \Phi_{H,1,2,3}.$$

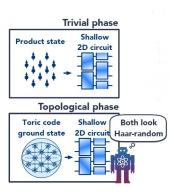
Applications

Power of time-reversal in quantum learning



- ▶ Distinguish 2D local circuit U_{2D} from U'_{2D} augmented with a long range interaction $e^{i\phi Z_i Z_j}$.
- Shallow PRU's break under time-reversal.

Hardness of recognising topological phases



- Hard to distinguish trivial order and toric code after appyling PRU.
- ► Topological order up to circuits of subextensive depth.

Shallow shadows

Classical shadows can be obtained with log(n)-depth circuits:

- Use the same inversion map as for Haar random measurement-channel.
- ▶ Learn M observables O with $O(\max_{O} ||O||_1 \log(M))$ samples.

Shallow shadows

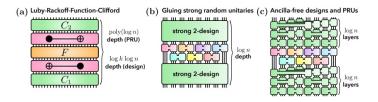
Classical shadows can be obtained with log(n)-depth circuits:

- ► Use the same inversion map as for Haar random measurement-channel.
- ▶ Learn M observables O with $O(\max_{O} ||O||_1 \log(M))$ samples.
- $| | \bullet | |_1$ scaling is bias from wrong inversion map.

Updates

Sophisticated constructions

- ► Inverse robust (strong) designs and PRUs with log-depth circuits.
- Near optimal depth with ancillae!
- Designs in quantum constant time, i.e. in QAC_f⁰.



Schuster, Ma, Lombardi, Brandao, and Huang, arXiv preprint Cui, Schuster, Brandao, and Huang, arXiv preprint Foxman, Parham, Vasconcelos, Yuen, arXiv preprint

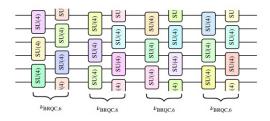
Will it glue?

Notion of randomness	Group					
	$U(2^n)$	$O(2^n)$	$\mathrm{USp}(2^n)$		Cl(n)	M(n)
additive-error group designs	$\mathcal{O}(\log(\frac{n}{\epsilon}))^{21,22}$	$\Omega(ext{L})$	$\Omega(ext{L})$	$k \ge 4$	$\Omega(L)$	$\Omega(n)$
relative-error state designs	$\Theta(\log(\frac{n}{\epsilon}))^{21,22}$	$\Omega(\mathbf{R})^*, \Omega(n)^{\dagger}$	$\Omega(ext{L})$	$k \ge 4$	$\Omega(\mathbf{R})^*, \Omega(n)^{\dagger}$	$\Omega(n)$
relative-error group designs	$\Theta(\log(\frac{n}{\epsilon}))^{21,22}$	all above	all above, $\Omega(n)^{\dagger}$	$k \ge 4$	all above	$\Omega(n)$
additive-error state designs	$\mathcal{O}(\log(\frac{n}{\epsilon}))^{21,22}$	$\mathcal{O}(\log(rac{n}{\epsilon}))$	$\mathcal{O}(\log(rac{n}{\epsilon}))$	k < 6:	$\mathcal{O}(\log(rac{n}{\epsilon}))$	$\Omega(n)$
anti- concentration	$\Theta(\log(n))^{25,26}$	$\mathcal{O}(\log(n))^{27}$	$\mathcal{O}(\log(n))$	Θ(1	$\log(n))^{28,29}$	$\Omega\left(\frac{n^{1/3}}{\log(n)}\right)$

- L = minimal depth for lightcone to touch constant fraction of qubits.
- ightharpoonup R = diameter of underlying architecture.

L. Grevink, J. Haferkamp, M. Heinrich, J. Helsen, M. Hinsche, T. Schuster, and Z. Zimboás, arXiv preprint M. West, D. Garcie-Martin, N.L. Diaz, M. Cerezo, M. Larocca, arXiv preprint

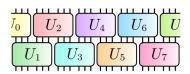
Unstructured random quantum circuits

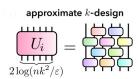


- Approximate state 2-designs in log-depth!
- Exploiting old stat-mech approaches to expectation values of random circuits.

Outlook

- ► Random quantum circuits with iid gates are PRU and *k*-designs?
- ▶ Optimal scaling of log(n) + k for designs?
- More applications!





Bonus slides

Why is the purity not a counterexample?

- Unitary 2-design have maximal entanglement but shallow circuits do not!
- $\mathbb{E} \operatorname{Tr}[\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|)^{2}] \leq (1+\varepsilon)2^{-\Omega(n)}?$

Why is the purity not a counterexample?

- Unitary 2-design have maximal entanglement but shallow circuits do not!
- $\mathbb{E} \operatorname{Tr} [\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|)^{2}] \leq (1+\varepsilon)2^{-\Omega(n)}?$
- ▶ Relative errors only for psd observables. But

$$\mathbb{E}\mathrm{Tr}\left[\mathrm{Tr}_A(|\psi\rangle\langle\psi|)^2\right]=\mathbb{E}\mathrm{Tr}\left[(|\psi\rangle\langle\psi|)^{\otimes 2}\mathbb{1}_A\otimes\mathbb{F}_B\right].$$

Why is the purity not a counterexample?

- Unitary 2-design have maximal entanglement but shallow circuits do not!
- $\mathbb{E} \operatorname{Tr}[\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|)^{2}] \leq (1+\varepsilon)2^{-\Omega(n)}?$
- Relative errors only for psd observables. But

$$\mathbb{E}\mathrm{Tr}\left[\mathrm{Tr}_A(|\psi\rangle\langle\psi|)^2\right]=\mathbb{E}\mathrm{Tr}\left[(|\psi\rangle\langle\psi|)^{\otimes 2}\mathbb{1}_A\otimes\mathbb{F}_B\right].$$

Relative errors only in the SWAP-test probability $\frac{1}{2} + \text{Tr}[\text{Tr}_{A}(|\psi\rangle\langle\psi|)^{2}].$

