How hard is it to verify a classical shadow?

Georgios Karaiskos ¹ Dorian Rudolph ¹ Johannes Jakob Meyer ² Jens Eisert ² **Sevag Gharibian** ¹

¹Institute for Photonic Quantum Systems (PhoQS) and Universität Paderborn, Germany

²Freie Universität Berlin, Germany

Theme

Theme

Theme

Question: How hard to check that a shadow represents what you think it represents?

Outline

Background: Classical Shadows

Our results

3 Proof sketch for local Clifford HKP protocol

• Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.

- **1** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:

- **1** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).

- O Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).
 - (b) Take a picture s_i (snapshot) of the duck, which scares duck away (collapse).

- **1** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).
 - (b) Take a picture s_i (snapshot) of the duck, which scares duck away (collapse).
- **3** Photographer hands you stack of photos $S = \{s_1, \dots, s_N\}$ (shadow).

- **1** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).
 - (b) Take a picture s_i (snapshot) of the duck, which scares duck away (collapse).
- **3** Photographer hands you stack of photos $S = \{s_1, \dots, s_N\}$ (shadow).
- 4 Using S and classical postprocessing, predict value of all P_i for your duck.

- **1** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).
 - (b) Take a picture s_i (snapshot) of the duck, which scares duck away (collapse).
- **3** Photographer hands you stack of photos $S = \{s_1, \dots, s_N\}$ (shadow).
- lacktriangle Using S and classical postprocessing, predict value of all P_i for your duck.

Question: How many snapshots N do you need to capture m properties?

- **①** Pick a set of duck-related properties you're interested in, $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Hire wildlife photographer (physicist) to repeat for N days:
 - (a) Find your duck (ρ) in the wild (lab).
 - (b) Take a picture s_i (snapshot) of the duck, which scares duck away (collapse).
- **3** Photographer hands you stack of photos $S = \{s_1, \dots, s_N\}$ (shadow).
- 4 Using S and classical postprocessing, predict value of all P_i for your duck.

Question: How many snapshots N do you need to capture m properties?

Answer: $N \sim \text{polylog}(m)$ [Aaronson 2018], i.e. sample-efficient.

Caveat: Not time efficient.

Huang-Kueng-Preskill (HKP) classical shadows [HKP20]

General framework:

- **1** Pick set of measurement operators, $\mathcal{P} = \{P_i\}_{i=1}^m$, and set of unitaries \mathcal{U} .
- Repeat N times:
 - (a) Produce *n*-qubit state ρ in lab.
 - (b) Pick random $U \in \mathcal{U}$, measure $U \rho U^{\dagger}$ in standard basis to obtain snapshot $s_i \in \{0, 1\}^n$.
- **3** Using $S = \{s_i\}$ and classical median-of-means, predict value of all $Tr(\rho P_i)$ within additive error ϵ .

Huang-Kueng-Preskill (HKP) classical shadows [HKP20]

General framework:

- **1** Pick set of measurement operators, $\mathcal{P} = \{P_i\}_{i=1}^m$, and set of unitaries \mathcal{U} .
- Repeat N times:
 - (a) Produce *n*-qubit state ρ in lab.
 - (b) Pick random $U \in \mathcal{U}$, measure $U \rho U^{\dagger}$ in standard basis to obtain snapshot $s_i \in \{0, 1\}^n$.
- **3** Using $S = \{s_i\}$ and classical median-of-means, predict value of all $Tr(\rho P_i)$ within additive error ϵ .

Sample complexity:

$$O\left(\frac{\log(\textit{m})}{\epsilon^2}\max_{1\leq i\leq \textit{m}}\left\|\textit{P}_i-\frac{\text{Tr}(\textit{P}_i)}{2^n}\textit{I}\right\|_{\text{shadow}}^2\right),$$

where $\|\cdot\|_{\text{shadow}}$ depends on choice of \mathcal{P} and \mathcal{U} .

Time complexity: Depends on complexity of implementing \mathcal{U} and corresponding postprocessing.

Two efficient instantiations of HKP classical shadows [HKP20]

Local Clifford:

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
- Sample complexity: $O(\log(m)4^k \max_{1 \le i \le m} \|P_i\|_{\infty}^2/\epsilon^2)$.

Two efficient instantiations of HKP classical shadows [HKP20]

Local Clifford:

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
- Sample complexity: $O(\log(m)4^k \max_{1 \le i \le m} \|P_i\|_{\infty}^2 / \epsilon^2)$.

Global Clifford:

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$.
- Random measurements: Global Clifford measurements on all n qubits.
- Sample complexity: $O(\log(m) \max_{1 \le i \le m} \|P_i\|_F^2 / \epsilon^2)$.

Central question of this work

Given $S = \{s_i\}$, how hard to verify if S consistent with some n-qubit ρ ?

Central question of this work

Given $S = \{s_i\}$, how hard to verify if S consistent with some n-qubit ρ ?

Problem: First need general formal definition of "classical shadow".

Formalization

Classical shadow

A shadow on n qubits is a 3-tuple (S, O, A), where

- (Shadow) Multi-set $S = \{s_i\}_{i=1}^N$ of poly(n)-bit strings, i.e. snapshots,
- (Observables) Set $O = \{O_i\}_{i=1}^m$ of observables s.t. $||O_i||_{\infty} \le 1$ and $1 \le m \le 4^n$. O is poly-time uniformly generated, i.e. given index i, poly-size quantum circuit for O_i can be efficiently produced.
- (Recovery) Efficient classical algorithm A which, given S and $i \in [m]$, produces $A(S, i) \in [-1, 1]$.

Formalization

Classical shadow

A shadow on n qubits is a 3-tuple (S, O, A), where

- (Shadow) Multi-set $S = \{s_i\}_{i=1}^N$ of poly(n)-bit strings, i.e. *snapshots*,
- (Observables) Set $O = \{O_i\}_{i=1}^m$ of observables s.t. $||O_i||_{\infty} \le 1$ and $1 \le m \le 4^n$. O is poly-time uniformly generated, i.e. given index i, poly-size quantum circuit for O_i can be efficiently produced.
- (Recovery) Efficient classical algorithm *A* which, given *S* and $i \in [m]$, produces $A(S, i) \in [-1, 1]$.

Classical Shadow Validity (CSV)

Given shadow (S, O, A), α , β s.t. $\beta - \alpha \ge 1/\text{poly}(n)$, decide:

- Yes: \exists *n*-qubit state ρ s.t. \forall $i \in [m]$, $|\text{Tr}(O_i\rho) A(S,i)| \leq \alpha$.
- No: \forall n-qubit states $\rho \exists$ some $i \in [m]$ s.t. $|\text{Tr}(O_i \rho) A(S, i)| \ge \beta$.

Outline

Background: Classical Shadows

Our results

3 Proof sketch for local Clifford HKP protocol

Hardness results:

Theorem 1

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Interpretation:

Even for protocols as simple as local Clifford HKP, shadow verification is hard!

Hardness results:

Theorem 1

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Interpretation:

Even for protocols as simple as local Clifford HKP, shadow verification is hard!

Theorem 2 (High-dimensional generalization of HKP)

CSV for local [Mao, Yi, Zhu 2025] shadows is QMA-complete for odd prime local dimension $d \ge 11$, even for 2-local nearest-neighbor O_i on a line.

"Dequantization" results:

Theorem 3

CSV for global Clifford HKP shadows is classically efficiently solvable if (a) $||O_i||_F \le poly(n)$ for all i, and (b) we are given query and sampling access to each O_i .

Recall:

- Sample complexity: $O(\log(m) \max_{1 \le i \le m} \|P_i\|_F^2 / \epsilon^2)$.
- Dequantization covers precisely regime where HKP is efficient!

"Dequantization" results:

Theorem 3

CSV for global Clifford HKP shadows is classically efficiently solvable if (a) $||O_i||_F \le poly(n)$ for all i, and (b) we are given query and sampling access to each O_i .

Recall:

- Sample complexity: $O(\log(m) \max_{1 \le i \le m} ||P_i||_F^2/\epsilon^2)$.
- Dequantization covers precisely regime where HKP is efficient!

Theorem 4

CSV for global [Mao, Yi, Zhu 2025] is classically efficiently solvable if (a) $||O_i||_F \le \text{poly}(n)$ for all i, and (b) we are given query and sampling access to each O_i .

Our results 2: Exponentially many observables O_i

Question: Since sample complexity is polylog(m), what about CSV for exponentially many observables m?

Question: Since sample complexity is polylog(m), what about CSV for exponentially many observables m?

[King, Gosset, Kothari and Babbush 2025]

- Classical shadow protocol for $O = \{I, X, Y, Z\}^n$.
- Preparing shadow is poly sample complexity, exponential time complexity.
 - Preparation time not relevant for CSV, since given shadow as input.
- "Rapid recovery": Poly-time recovery algorithm A for $\epsilon \in \Theta(1)$ precision.

Question: Since sample complexity is polylog(m), what about CSV for exponentially many observables m?

[King, Gosset, Kothari and Babbush 2025]

- Classical shadow protocol for $O = \{I, X, Y, Z\}^n$.
- Preparing shadow is poly sample complexity, exponential time complexity.
 - Preparation time not relevant for CSV, since given shadow as input.
- "Rapid recovery": Poly-time recovery algorithm A for $\epsilon \in \Theta(1)$ precision.

Theorem 5

CSV for exponentially many observables and constant error ϵ recovery precision is qc- Σ_2 -complete.

Question: Since sample complexity is polylog(m), what about CSV for exponentially many observables m?

[King, Gosset, Kothari and Babbush 2025]

- Classical shadow protocol for $O = \{I, X, Y, Z\}^n$.
- Preparing shadow is poly sample complexity, exponential time complexity.
 - Preparation time not relevant for CSV, since given shadow as input.
- "Rapid recovery": Poly-time recovery algorithm A for $\epsilon \in \Theta(1)$ precision.

Theorem 5

CSV for exponentially many observables and constant error ϵ recovery precision is qc- Σ_2 -complete.

- Pro: First natural complete problem for $qc-\Sigma_2$, quantum generalization of Σ_2^p
 - ▶ qc-Σ₂: \exists quantum proof $|\psi\rangle$ s.t. \forall classical proofs y, quantum verifier V accepts $(|\psi\rangle, y)$.

Question: Since sample complexity is polylog(m), what about CSV for exponentially many observables m?

[King, Gosset, Kothari and Babbush 2025]

- Classical shadow protocol for $O = \{I, X, Y, Z\}^n$.
- Preparing shadow is poly sample complexity, exponential time complexity.
 - Preparation time not relevant for CSV, since given shadow as input.
- "Rapid recovery": Poly-time recovery algorithm A for $\epsilon \in \Theta(1)$ precision.

Theorem 5

CSV for exponentially many observables and constant error ϵ recovery precision is qc- Σ_2 -complete.

- Pro: First natural complete problem for qc- Σ_2 , quantum generalization of Σ_2^p
 - ▶ qc- Σ_2 : \exists quantum proof $|\psi\rangle$ s.t. \forall classical proofs y, quantum verifier V accepts $(|\psi\rangle, y)$.
- Con/open question: Cannot prove it for observable set $O = \{I, X, Y, Z\}^n$.

Our results 3: Variants of CSV

Theorem 6

CSV where consistent state must be product, i.e., $\rho = \rho_A \otimes \rho_B$, is:

- QMA(2)-complete for polynomially many observables, and
- qcq- Σ_3 -complete for exponentially many observables.

Here:

- QMA(2) is QMA but with tensor product proof $\rho = \rho_A \otimes \rho_B$.
- qcq- Σ_3 : \exists quantum proof $|\psi\rangle$ s.t. \forall classical proofs y \exists quantum proof $|\phi\rangle$, s.t. V accepts $(|\psi\rangle, y, |\phi\rangle)$.

Our results 3: Variants of CSV

Theorem 6

CSV where consistent state must be product, i.e., $\rho = \rho_A \otimes \rho_B$, is:

- QMA(2)-complete for polynomially many observables, and
- $qcq-\Sigma_3$ -complete for exponentially many observables.

Here:

- QMA(2) is QMA but with tensor product proof $\rho = \rho_A \otimes \rho_B$.
- qcq- Σ_3 : \exists quantum proof $|\psi\rangle$ s.t. \forall classical proofs y \exists quantum proof $|\phi\rangle$, s.t. V accepts $(|\psi\rangle, y, |\phi\rangle)$.

Theorem 7

Verifying if set of shadows, each possibly with different observables, all correspond to the same ρ is:

- QMA-complete for polynomially many observables, and
- qc- Σ_2 -complete for exponentially many observables.

Outline

Background: Classical Shadows

Our results

Proof sketch for local Clifford HKP protocol

Theorem 1

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Theorem 1

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Naive idea: CSV sounds suspiciously like QMA-complete Consistency of Local Density Matrices problem...

CONSISTENCY [Liu 2006]

Given poly many k-local density matrices ρ_i , is there global n-qubit ρ consistent with all ρ_i ?

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Naive idea: CSV sounds suspiciously like QMA-complete Consistency of Local Density Matrices problem...

CONSISTENCY [Liu 2006]

Given poly many k-local density matrices ρ_i , is there global n-qubit ρ consistent with all ρ_i ?

Indeed: CONSISTENCY is special case of CSV \implies get QMA-hardness of general CSV problem for free!

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Naive idea: CSV sounds suspiciously like QMA-complete Consistency of Local Density Matrices problem...

CONSISTENCY [Liu 2006]

Given poly many k-local density matrices ρ_i , is there global n-qubit ρ consistent with all ρ_i ?

Indeed: CONSISTENCY is special case of CSV \implies get QMA-hardness of general CSV problem for free!

Challenge:

- Does not suffice for QMA-hardness of classical shadows used in practice, e.g. HKP shadows
- Unlike local reduced states ρ_i . HKP shadows are highly non-local objects

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Naive idea: CSV sounds suspiciously like QMA-complete Consistency of Local Density Matrices problem...

CONSISTENCY [Liu 2006]

Given poly many k-local density matrices ρ_i , is there global n-qubit ρ consistent with all ρ_i ?

Indeed: CONSISTENCY is special case of CSV \implies get QMA-hardness of general CSV problem for free!

Challenge:

- Does not suffice for QMA-hardness of classical shadows used in practice, e.g. HKP shadows
- Unlike local reduced states ρ_i , HKP shadows are highly non-local objects
 - ► Reducing CONSISTENCY to HKP = stitching together overlapping local data to build global state

CSV for local Clifford HKP shadows is QMA-complete, even for 6-local O_i on a spatially sparse hypergraph.

Naive idea: CSV sounds suspiciously like QMA-complete Consistency of Local Density Matrices problem...

CONSISTENCY [Liu 2006]

Given poly many k-local density matrices ρ_i , is there global n-qubit ρ consistent with all ρ_i ?

Indeed: CONSISTENCY is special case of CSV \implies get QMA-hardness of general CSV problem for free!

Challenge:

- Does not suffice for QMA-hardness of classical shadows used in practice, e.g. HKP shadows
- Unlike local reduced states ρ_i , HKP shadows are highly non-local objects
 - Reducing CONSISTENCY to HKP = stitching together overlapping local data to build global state
 - ▶ Even worse, this has to be done while simulating measurement statistics of HKP shadows...

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.
 - ▶ Defining $\hat{\eta}_j = 3|\psi_i\rangle\langle\psi_i| I$, obtain snapshot $s = \hat{\eta}_1 \otimes \cdots \otimes \hat{\eta}_n$.

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.
 - ▶ Defining $\hat{\eta}_i = 3|\psi_i\rangle\langle\psi_i| I$, obtain snapshot $s = \hat{\eta}_1 \otimes \cdots \otimes \hat{\eta}_n$.
 - ▶ Shadow $S = \{s_1, s_2, ..., s_m\}$ is set of all snapshots.

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.
 - ▶ Defining $\hat{\eta}_i = 3|\psi_i\rangle\langle\psi_i| I$, obtain snapshot $s = \hat{\eta}_1 \otimes \cdots \otimes \hat{\eta}_n$.
 - ▶ Shadow $S = \{s_1, s_2, ..., s_m\}$ is set of all snapshots.

Goal

Given k-local states e.g. $\rho_{1,2,5}$, $\rho_{2,4,9}$, etc, map to n-local snapshots e.g. $s_1 = \hat{\eta}_{1,1} \otimes \cdots \otimes \hat{\eta}_n$, $s_2 = \hat{\eta}_{2,1} \otimes \cdots \otimes \hat{\eta}_{2,n}$, etc, such that:

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.
 - ▶ Defining $\hat{\eta}_j = 3|\psi_i\rangle\langle\psi_i| I$, obtain snapshot $s = \hat{\eta}_1 \otimes \cdots \otimes \hat{\eta}_n$.
 - ▶ Shadow $S = \{s_1, s_2, ..., s_m\}$ is set of all snapshots.

Goal

Given K-local states e.g. $\rho_{1,2,5}$, $\rho_{2,4,9}$, etc, map to n-local snapshots e.g. $s_1 = \hat{\eta}_{1,1} \otimes \cdots \otimes \hat{\eta}_n$, $s_2 = \hat{\eta}_{2,1} \otimes \cdots \otimes \hat{\eta}_{2,n}$, etc, such that:

• $\rho_{i,j,k}$ globally consistent iff frequency of s_i consistent with measuring some global ρ with random local Cliffords, and

- Properties to predict: $\mathcal{P} = \{P_i\}_{i=1}^m$ are k-local observables.
- Random measurements: Independent single-qubit Clifford measurements on each qubit.
 - Given ρ , measure each qubit at random in eigenbasis of X, Y, or Z.
 - ▶ Let $|\psi_i\rangle$ be obtained result for qubit *i*.
 - ▶ Defining $\hat{\eta}_i = 3|\psi_i\rangle\langle\psi_i| I$, obtain snapshot $s = \hat{\eta}_1 \otimes \cdots \otimes \hat{\eta}_n$.
 - ▶ Shadow $S = \{s_1, s_2, ..., s_m\}$ is set of all snapshots.

Goal

Given k-local states e.g. $\rho_{1,2,5}$, $\rho_{2,4,9}$, etc, map to n-local snapshots e.g. $s_1 = \hat{\eta}_{1,1} \otimes \cdots \otimes \hat{\eta}_n$, $s_2 = \hat{\eta}_{2,1} \otimes \cdots \otimes \hat{\eta}_{2,n}$, etc, such that:

- $\rho_{i,j,k}$ globally consistent iff frequency of s_i consistent with measuring some global ρ with random local Cliffords, and
- $E[s_i] = \rho$, where expectation with respect to randomness in HKP protocol.

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ► Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - **Easier** to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].

- **1** Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - **Easier** to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- 2 Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .

- **1** Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ▶ Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.

- **1** Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ▶ Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - ► Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.
 - Problem: LP returns real numbers, but each local snapshot can only occur integer number of times in shadow.

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ▶ Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.
 - Problem: LP returns real numbers, but each local snapshot can only occur integer number of times in shadow.
- "Round" LP into integer program (IP) to give integer weights on local snapshots.

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ▶ Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.
 - Problem: LP returns real numbers, but each local snapshot can only occur integer number of times in shadow.
- "Round" LP into integer program (IP) to give integer weights on local snapshots.
 - ▶ Problem: IPs generally NP-hard to solve...

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - ▶ Easier to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagai, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.
 - Problem: LP returns real numbers, but each local snapshot can only occur integer number of times in shadow.
- "Round" LP into integer program (IP) to give integer weights on local snapshots.
 - ▶ Problem: IPs generally NP-hard to solve...
 - ► Solution: Leverage 1D structure to solve via dynamic programming in poly-time.

- Prove 1D CONSISTENCY problem on qudits with d = 8 is QMA-hard under many-one reductions.
 - **Easier** to "stitch together" nearest neighbor local states $\rho_{1,2}$, $\rho_{2,3}$, etc on the line.
 - ► Combines locally simulatable codes [Broadbent, Grilo 2022] + 1D QMA-hardness of local Hamiltonian [Hallgren, Nagaj, Narayanaswami 2013].
- Write each qudit q_i as qubit triples T_i . Consider all possible 6-local HKP snapshots on pairs (T_i, T_{i+1}) .
- Write linear program (LP) to compute "how much probability" to put onto each local snapshot, s.t.:
 - "Local probabilities" consistent with global HKP shadow iff 1D CONSISTENCY was YES instance.
 - ▶ Leverages HKP requirement that $E[s_i] = \rho$.
 - Problem: LP returns real numbers, but each local snapshot can only occur integer number of times in shadow.
- "Round" LP into integer program (IP) to give integer weights on local snapshots.
 - ▶ Problem: IPs generally NP-hard to solve...
 - ► Solution: Leverage 1D structure to solve via dynamic programming in poly-time.
- Construct global snapshots by stitching together local snapshots under appropriate permutations given by perfect matching.

- Formal definition of classical shadows and their verification
- QMA-hardness for verifying local Clifford HKP shadows
- "Dequantization" of global Clifford HKP shadows
- qc- Σ_2 -completeness of shadow verification of exponentially many observables

- Formal definition of classical shadows and their verification
- QMA-hardness for verifying local Clifford HKP shadows
- "Dequantization" of global Clifford HKP shadows
- qc- Σ_2 -completeness of shadow verification of exponentially many observables

Open questions

- qc- Σ_2 -hardness of verifying King-Gosset-Kothari-Babbush shadows for observable set $\{I, X, Y, Z\}^n$?
- Are there cases where shadow verification be done efficiently without sampling assumptions?

- Formal definition of classical shadows and their verification
- QMA-hardness for verifying local Clifford HKP shadows
- "Dequantization" of global Clifford HKP shadows
- qc- Σ_2 -completeness of shadow verification of exponentially many observables

Open questions

- qc- Σ_2 -hardness of verifying King-Gosset-Kothari-Babbush shadows for observable set $\{I, X, Y, Z\}^n$?
- Are there cases where shadow verification be done efficiently without sampling assumptions?

- Formal definition of classical shadows and their verification
- QMA-hardness for verifying local Clifford HKP shadows
- "Dequantization" of global Clifford HKP shadows
- qc- Σ_2 -completeness of shadow verification of exponentially many observables

Open questions

- qc- Σ_2 -hardness of verifying King-Gosset-Kothari-Babbush shadows for observable set $\{I, X, Y, Z\}^n$?
- Are there cases where shadow verification be done efficiently without sampling assumptions?

