Exercises, lecture 1

1. Let X be a Banach space with dual X^* and $X^{**} := (X^*)^*$.
 a. For fixed $x \in X$ let $S_x : X^* \to \mathbb{R}$ with $S_x(x^*) := \langle x^*, x \rangle$.
 Show that $S_x \in X^{**}$.
 b. Show that $x^*_n \to x^*$ implies $x^*_n \to x^*$.
 c. Show that $x^*_n \to x^*$ (in norm) implies $x^*_n \to x^*$.
 d. Prove that norm-continuity of a functional $F : X^* \to \mathbb{R}$ is weaker than weak continuity.

2. Assume that X has a predual (and the norms coincide) and let $F(x) := \|x\|_X$.
 a. Show that F is weakly-* l.s.c.
 b. Show that there exists a minimizer of F (Using the direct method, else it would be trivial!)

3. Can you construct a convex discontinuous function $F : \mathbb{R} \to \mathbb{R}$?
Exercises Lecture 2

1. What are the weak and weak-* topologies on IR?

2. By Riesz' Representation Theorem for measures,
\[(C_c(\mathbb{R}))^* = \{\mu: \text{regular signed measures on } \mathbb{R}\},\]
with
\[\|\mu\|_{C_c} = \sup_{\varphi \in C_c} \langle \varphi, \mu \rangle = \|\mu\|_1(\mathbb{R}) \text{ "total variation".}\]
Consider the sequence \((S_n)_{n \in \mathbb{N}} \subset (C_c(\mathbb{R}))^*\).

a. Show that the sequence is weakly-* compact.

b. The sequence actually converges weakly-* (not just up to a subsequence). Calculate the limit.

c. By another Riesz Representation Theorem,
\[(C_b(\mathbb{R}))^* = \{\mu: \text{regular, finitely additive set functions}\},\]
(i.e. "measures" that only finitely additive)
Show that the sequence \((S_n)_{n \in \mathbb{N}} \subset (C_b(\mathbb{R}))^*\) is weakly-* compact.

3. Show that the Hahn-Banach separation theorem implies that:
- \(\text{dist}(A, H) \geq \varepsilon\)
- \(\text{dist}(B, H) \geq \varepsilon\).

4. Let \(F: X \rightarrow [\mathbb{R} \cup \{\infty\}]\) be convex. Show that its level sets \(\{F \leq c\}\) are convex.

b. Give an example of a non-convex function with convex level sets.
1) Let $F: X \to \mathbb{R} \cup \{\infty\}$ be convex and l.s.c. (in the norm topology). Show that F is weakly l.s.c.

2) Show that F is convex \iff epi(F) is convex.

3) Consider the functional $F(x) = \infty$.
 a) Is F convex?
 b) Is F l.s.c.?
 c) What is epi(F)?
1. If \(\liminf_{n \to \infty} a_n = a = \limsup_{n \to \infty} a_n \) \((a_n)_{n \in \mathbb{N}} \in \mathbb{R} \) \(a \in \mathbb{R} \)
then \(\lim_{n \to \infty} a_n = a \).

2. If \(F : X \to \mathbb{R} \) is lower and upper semicontinuous
then \(F \) is continuous \(\) (in some topology).

3. If \(F : X \to \mathbb{R} \) is sequentially lsc and usc
then \(F \) is sequentially continuous.

4. If \(F : \mathbb{R}^d \to \mathbb{R} \cup \{0\} \) is convex, then it is weakly
lsc on \(\text{int} \)(dom \(F \)).
Exercises 5

1. \(\lambda_B : \mathbb{R} \to \mathbb{R} \cup \{ \infty \} \) "The Boltzmann function"
\[\lambda_B(x) = \begin{cases} x \log x - x + 1, & x > 0, \\ 1, & x = 0, \\ \infty, & x < 0. \end{cases} \]

2. Is \(\lambda_B \) convex?

3. What is \(\partial \lambda_B(x) \) for \(x \in \mathbb{R} \)?

4. For any convex \(F : X \to \mathbb{R} \cup \{ \infty \} \), show that \(\partial F(x) \) is sequentially weakly-* closed.

5. Prove the monotonicity property of subdifferentials.

Exercises 6

1) Let $C \subseteq X$ be a set, and

$$F(x) = S_x(C) = \mathbb{1}_{\{x \in C\}}$$

a) Calculate F

b) Calculate $\text{co}F$

c) Write F^* in terms of the support function

2) Let $X = \mathbb{R}$ and $F : X \to \mathbb{R}$ (not attaining ∞) continuous, differentiable and convex. Construct an explicit family $(F_{x_0})_{x_0 \in X}$ of continuous affine functions such that $F(x) = \sup_{x_0 \in X} F_{x_0}(x)$.

3) Let X be any Banach space and $F : X \to \mathbb{R}$ be lsc and convex. In lecture 5 we proved that the subdifferential is (everywhere) convex, (norm-)bounded and nonempty. Use the subdifferential to construct a family $(F_i)_{i \in I}$ of continuous affine functions such that $F(x) = \sup_{i \in I} F_i(x)$. (Hint: this requires a larger index set than in the previous exercise, or an explicit use of the axiom of choice!)

4a) $X = \mathbb{R}$, $b > 0$.

Calculate the convex dual of $F(x) = b(e^x - 1)$.

b) Calculate the convex dual of

$$F(x) = \begin{cases} b \lambda_b \left(\frac{x}{b} \right) & x > 0 \\ -x + b & x < 0 \end{cases}$$
1. Prove the proposition "properties of convex duals".

2. Assume that a convex $F : X \to \mathbb{R} \cup \{\infty\}$ and its convex dual $F^* : X^* \to \mathbb{R} \cup \{\infty\}$ are both Gâteaux differentiable, and recall that $DF(x), DF^*(x)$. What is the relation between DF and DF^*?
1. Let \(F : H \to \mathbb{R}_+ \).

 a. What is \((F_\varepsilon)_\varepsilon \) (The Moreau-Yosida regularization applied to the Moreau-Yosida regularization)?

2a. Calculate \(F_\varepsilon^* \)

2b. Now assume \(F \) is proper, convex & l.s.c.

 Calculate \(F_{\varepsilon}^{**} \)
1. & 2. Prove the two corollaries of Jensen's inequality from Lecture g, part B.

3. Show that (for $x \in L^2((0,1)^d)$):

$$\int_{(0,1)^d} x_1(x_2) dx = \int_{(0,1)^d} (x_2 \log x_2 - x_2 + 1) dx \leq \|x\|_L^2 \log \frac{\|x\|_L^2}{\|x\|_L^2} - \|x\|_L^2 + 1$$
Exercise 10

1. Assume \(U \subset \mathbb{R}^n \) is bounded, connected and has a smooth boundary. Recall Poincaré's inequality:

\[
\| x - \bar{x} \|_{L^p(U)} \leq \| \nabla x \|_{L^p(U)}, \quad \bar{x} := \frac{1}{|U|} \int_U x(u) \, du.
\]

Let \(L(a, b) := \sqrt{\lambda a e^{\lambda a} (\sin b + 1)} \), and
\[
F(x) := \int_U L(\nabla x(u), x(u)) \, du.
\]

We shall show that the constrained minimisation problem

\[
\inf_{x \in W^{1,1/2}(U), \bar{x} = 1} F(x)
\]

admits a minimiser.

(a) First show that \(G(x) := \begin{cases} F(x), & \bar{x} = 1, \\ \infty, & \bar{x} \neq 1 \end{cases} \) has weak sequential relative compact level sets. (Hint: Banach-Alaoglu & Poincaré)

(b) Show that \(F \) is weakly (sequentially) lsc (in \(W^{1,1/2}(U) \)).

(c) Show that \(x \mapsto \bar{x} \) is (sequentially) weakly continuous, and deduce that \(\{ \bar{x} = 1 \} \) is weakly (sequentially) closed.

(d) Show that \(G \) is (sequentially) weakly lsc.

(e) Use the direct method to show that the constrained minimisation problem has a solution.
Exercises 11

1. Recall that \(\lambda_0(z) = z \log z - z + 1 \) and \(z \mapsto \lambda_0(1z^1 + 1) \) is an N-function.

2. Exploit the convexity of \(\lambda_0 \) to show that
 \[\lambda_0(z) \geq 2 \lambda_0(\frac{z}{2} + 1) - \lambda_0\left(\frac{z}{2}\right). \]

3. Let \(F(x) = \int \lambda_0(x(a)) \, dq = S(x \cdot \mathbf{1}((0,1)^d)) \), for \(x \in L^1((0,1)^d) \), \(x \geq 0 \).
 Show that \(\int \lambda_0(\frac{|x(a)|}{2} + 1) \, dq \) is uniformly bounded on level sets \(\{ F \leq C \} \).

4. Show that \(\{ F \leq C \} \) is also uniformly \(L^1((0,1)^d) \)-bounded.

5. Deduce that \(F \) has weakly compact level sets in \(L^2((0,1)^d) \).

2. Let \(\varphi \) be an N-function. Prove that \(\varphi^* \) is an N-function.

3. Show that any \(\lambda \)-convex functional can be written as the supremum over quadratic functionals of the form
 \[x \mapsto a \| x \|^2 + \langle x^*, x \rangle + b, \quad x^* \in X^*, \quad a, b \in \mathbb{R}. \]
Exercises 12

1. We shall prove that \(\| \cdot \|_p \) is a norm (Assuming \(\varphi \) is an \(N \)-function).
 a) Prove that \(\| a \cdot x \|_p = |a| \| x \|_p \).
 b) Prove the triangle inequality:
 \(\| x + y \|_p \leq \| x \|_p + \| y \|_p \).
 c) Show that there exists a \(c > 0 \) so that \(\varphi(c) \leq 1 \).
 d) Use this constant to show that \(\| x \|_p = 0 \Rightarrow x = 0 \) (\(\mu \)-a.e.).

2. Let \(\psi_1(z) := z \log z - z \),
 \(\psi_2(z) := -z \log(32z) - z \),
 \(\psi(z) := (\psi_1 \circ \psi_2)(z) \), and \(F(x) := \int \psi(1 \times 1) \, dy \).
 We work with the \(N \)-function \(\varphi(z) := \cosh(1)(z) + 1 \).
 Calculating explicit expressions for \(\psi \) and \(\varphi \) is a pain!
 Instead, it's much easier to work with their convex duals!
 We shall prove that \(F \) has \(N_\varphi \)-bounded level sets \(\{ F \leq C \} \).
 a) Calculate \(\psi^* \), \(\psi_2^* \), \(\varphi^* \), and \(\varphi^* \).
 b) Show that \(\psi^* \leq \varphi^* + 1 \).
 c) Deduce that \(\psi \geq \ldots \).
 d) Use this inequality (from c) to show that \(\int \psi(1 \times 1) \, dy \) is uniformly bounded on level sets \(\{ F \leq C \} \).
 e) Deduce that \(\| x \|_p \) is uniformly bounded on level sets.
 (Krasnoselskii-Rutickii)
 f) Exploit the equivalence of norms to show that \(N_\varphi(x) \) is uniformly bounded on level sets.

3. Use the unit ball property of the Luxemburg norm to deduce that
 \(\| x \|_p = \sup \{ \int x \cdot y \, dy : y \in L^p(\mathbb{R}), \ N_\varphi(y) \leq 1 \} \).
 b) Deduce the Hölder-type estimate:
 \(\int x \cdot y \, dy \leq \| x \|_p \varphi^*(y) \wedge N_\varphi(x)\| y \|_p \).
1. Consider the same setting as exercise 11.1, i.e.
\[\lambda_\beta(z) = \begin{cases} \frac{z \log z - z + 1}{z}, & \text{if } z > 0, \\ 0, & \text{if } z = 0, \\ \frac{z - 1}{z}, & \text{if } z < 0, \end{cases} \]
and
\[F(x) = \int_{(0,1)^d} \lambda_\beta(x) \, dx. \]
Let \(\varphi(z) := \lambda_\beta(|z| + 1) \) (this is also a typical \(N \)-function).

(a) prove that \(F(x) < \infty \Rightarrow x \in \ell_1^1((0,1)^d) \).
(b) prove that \(F(x) < \infty \Rightarrow x \in \ell^0_\infty((0,1)^d) \).
(c) derive a that \(F \) has \(N_\infty \)-uniformly bounded level sets.
(d) deduce that \(F \) has \(L_1^1 \)-weakly compact sets.
(e) deduce that \(F \) has \(L^0_\infty \)-weakly-* compact level sets.
(f) what could be a general strategy to prove \(L_1^1 \)-weak or \(L^0_\infty \)-weak-* lower semicontinuity?