- 1. Let X_1 be a random variable with finite moments $\phi(t) := \mathbb{E}e^{tX_1} < \infty$, with its Cramér transform \hat{X}_1 (as defined in the lecture video L2a). Calculate $\mathbb{E}\hat{X}_1$ and $\hat{\phi}(t) := \mathbb{E}e^{t\hat{X}_1}$.
- 2. Let X_1 be a random variable with finite moments $\phi(t) := \mathbb{E}e^{tX_1} < \infty$. Show that $\log \phi$ is convex. *Hint: for a convex combination* $(1 \lambda)t_0 + \lambda t_1$, apply Hölder's inequality with the two functions $e^{(1-\lambda)t_0x}$ and $e^{\lambda t_1x}$.

Let \mathcal{X} be a topological space equipped with its Borel σ -algebra.

Definition 0.1. A sequence of random variables X_n (or its laws $\mu_n \in \mathbb{P}(\mathcal{X})$) is exponentially tight if for any $\eta < \infty$ there exists a compact¹ set $K_\eta \subset$ so that

$$\limsup_{n \to \infty} \frac{1}{n} \log \mu_n(K_\eta^c) < -\eta.$$

Definition 0.2. A functional $I : \mathcal{X} \to [0, \infty]$ is called lower semicontinuous if the (sub)level sets $\{\mathcal{I} \leq C\} := \{x \in \mathcal{X} : \mathcal{I}(x) \leq C\}$ are closed. A functional $I : \mathcal{X} \to [0, \infty]$ is called good² if the level sets $\{I \leq C\}$ are compact.

- 3. Let an exponentially tight sequence μ_n satisfy a large-deviation principle (actually we only need the lower bound!) with rate functional $\mathcal{I} : \mathcal{X} \to [0, \infty]$.
 - (a) For any $\eta < \infty$, derive that $\inf_{K_n^c} \mathcal{I} > \eta$,
 - (b) Argue that the level set $\{\mathcal{I} \leq \eta\}$ is contained in K_{η} ,
 - (c) Conclude that \mathcal{I} is good.

Remark 0.3. Actually, for Polish (=separable metric) spaces, exponential tightness and goodness of the rate functional are equivalent!

¹For the Borel σ -algebra, compact sets are automatically measurable.

²The term 'goodness' is used almost exclusively in large-deviations theory; in analysis it is sometimes called coercivity.