1. Prove the following Laplace principle

$$\lim_{n \to \infty} \frac{1}{n} \log \left(e^{-an} + e^{-bn} \right) = -\min\{a, b\} \qquad \text{for any } a, b \in [0, \infty).$$
(1)

(It's a very nice simple trick, but don't spend too much time on it if you don't see it ;-))

Let \mathcal{X} be a topological space (with its Borel σ -algebra).

- 2. Let $(\mu_n)_n$ satisfy an LDP with rate functional $I : \mathcal{X} \to [0, \infty]$. Show that $\inf_{\mathcal{X}} I = 0$, and argue that this may not hold when $(\mu_n)_n$ satisfies a weak LDP only.
- 3. Let $(\mu_n)_n$ satisfy a *weak* LDP with rate functional $I : \mathcal{X} \to [0, \infty]$, and assume that $(\mu_n)_n$ is exponentially tight. We are going to show that $(\mu_n)_n$ satisfies an LDP.
 - (a) Take any closed set $G \subset \mathcal{X}$ and let K_{η} be compact sets for which the sequence is exponentially tight. Write down the large-deviation upper bounds for the sets $G \cap K_{\eta}$ and K_{η}^{c} .
 - (b) Derive upper bounds on $\mu_n(G \cap K_\eta)$ and $\mu_n(K_\eta)$ for n sufficiently large (this will involve an arbitrary $\epsilon > 0$).
 - (c) Use this together with the Laplace principle (1) to show that

$$\limsup_{n \to \infty} \frac{1}{n} \log \mu_n(G) \le -\min\{\inf_{G \cap K_\eta} I, \eta\}.$$

(d) Make a smart choice for η to conclude the LDP upper bound for G.