1. Prove the following Laplace principle

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(e^{-a n}+e^{-b n}\right)=-\min \{a, b\} \quad \text { for any } a, b \in[0, \infty) \tag{1}
\end{equation*}
$$

(It's a very nice simple trick, but don't spend too much time on it if you don't see it ;-))
Let \mathcal{X} be a topological space (with its Borel σ-algebra).
2. Let $\left(\mu_{n}\right)_{n}$ satisfy an LDP with rate functional $I: \mathcal{X} \rightarrow[0, \infty]$. Show that $\inf _{\mathcal{X}} I=0$, and argue that this may not hold when $\left(\mu_{n}\right)_{n}$ satisfies a weak LDP only.
3. Let $\left(\mu_{n}\right)_{n}$ satisfy a weak LDP with rate functional $I: \mathcal{X} \rightarrow[0, \infty]$, and assume that $\left(\mu_{n}\right)_{n}$ is exponentially tight. We are going to show that $\left(\mu_{n}\right)_{n}$ satisfies an LDP.
(a) Take any closed set $G \subset \mathcal{X}$ and let K_{η} be compact sets for which the sequence is exponentially tight. Write down the large-deviation upper bounds for the sets $G \cap K_{\eta}$ and K_{η}^{c}.
(b) Derive upper bounds on $\mu_{n}\left(G \cap K_{\eta}\right)$ and $\mu_{n}\left(K_{\eta}\right)$ for n sufficiently large (this will involve an arbitrary $\epsilon>0$).
(c) Use this together with the Laplace principle (1) to show that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(G) \leq-\min \left\{\inf _{G \cap K_{\eta}} I, \eta\right\}
$$

(d) Make a smart choice for η to conclude the LDP upper bound for G.

