1. Let S, := Z?:l X; be the empirical sum of iid random variables X1, X5,... in R. In the
proof of the large-deviation principle for the empirical average %Sn, use Cramér’s Theorem
to show the alternative lower bound for the case where x < EX; and € > 0 is sufficiently
small, that is:

(LB) liminf L logP(25, € B.(z)) > —I(z).

n— oo

2. For any two finite measures p,v € M(X) on a measurable space, the relative entropy is
defined as

Hip|v) = {{.j(p(dx) log g—ﬁ(x) — p(dz) + V(d.’L‘)), gtferz;,/ise

Show that inf, H(p | v) = 0.

The next exercise does not require much preknowledge, but it shows a deep connection between
large deviations, thermodynamics and information theory.

3. Consider n ‘particles’ x1,...,z, on a finite space {1,...,L}. We first study information
theoretic aspects and later introduce randomness. In thermodynamics/statistical mechanics
one often distinguishes between microscopic states and macroscopic states. In this setting,
one may think of all particle coordinates x = (z1,...,,) as a micro state (where all particles
are distinct), and its corresponding empirical measure % Z?:l 1,, as the macro state (where
only the number of particles at each site matters), see picture:
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(If you are having trouble with this exercise just take L = 2.)

(a) Write down the Boltzmann entropy of a given macro state p"” € (1N)!NP({1,...,L}),
defined as:

Ent,(p") := kplog #Q,(p"), where
Q. (p") == {micro states « € {1,...,L}" : macro state + 37" | 1,, = p"}7

and kg is the Boltzmann constant.

(b) The Boltzmann entropy blows up as n — oo, so for large particle numbers one usually
takes the average entropy per particle. Calculate this limit (formally):

Ent(p) := lim 1Ent,(p"),

n—oo

assuming each p" € (1N)!NP({1,...,L}) and p" — p € P({1,...,L}).

Remark: the resulting formula is what physicists usually use as the entropy, whereas
mathematicians usually drop the constant and flip the minus sign.

The Boltzmann entropy is purely combinatoric/information theoretic, so it is only a useful
concept if all sites 1,. .., L are equally likely. In general one needs something more advanced.
Let X7, X5, ... be iid random variables with values in the finite set {1,..., L}, with proba-
bilities P(X; = 1) =: v;. Now the empirical measure L™ := - Z?:l 1x, is a random variable
in P({1,...,L}).
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For an abitrary test ‘function’ f € R”, what is the weak limit of f - L,, as n — 0o? No
proof needed, but where does L™ weakly converge to?

Write down the probability that L™ = p" for a given p" € (N)L N P({1,...,L}).

1

Again assuming p" — p € P({1,...,L}), (formally) show that:
1

lim - logP(L™ = p™) =H(p | v).

n—oo
In physics, one often has probabilities of the form

L v
v = — e~ Vi/(kBT)
l ZT )
where V; is some energy function, T is the temperature, and Zp is a normalisation
constant. Show that

. kgT
lim —

n— oo n

logP(L™ = p™) = U(p) — TEnt(p) + const
for some function U(p) and a constant not depending on p.

Remark: physicists call U(p) the internal energy, U(p) — TEnt(p) the Helmholtz free
energy, and they don’t care about the constant.



