
1. Let Sn :=
∑n
i=1Xi be the empirical sum of iid random variables X1, X2, . . . in R. In the

proof of the large-deviation principle for the empirical average 1
nSn, use Cramér’s Theorem

to show the alternative lower bound for the case where x < EX1 and ε > 0 is sufficiently
small, that is:

(LB’) lim inf
n→∞

1
n logP

(
1
nSn ∈ Bε(x)

)
≥ −I(x).

2. For any two finite measures ρ, ν ∈ M(X ) on a measurable space, the relative entropy is
defined as

H(ρ | ν) :=

{∫
X
(
ρ(dx) log dρ

dν (x)− ρ(dx) + ν(dx)
)
, ρ� ν,

∞, otherwise,

Show that infρH(ρ | ν) = 0.

The next exercise does not require much preknowledge, but it shows a deep connection between
large deviations, thermodynamics and information theory.

3. Consider n ‘particles’ x1, . . . , xn on a finite space {1, . . . , L}. We first study information
theoretic aspects and later introduce randomness. In thermodynamics/statistical mechanics
one often distinguishes between microscopic states and macroscopic states. In this setting,
one may think of all particle coordinates x = (x1, . . . , xn) as a micro state (where all particles
are distinct), and its corresponding empirical measure 1

n

∑n
i=1 1xi as the macro state (where

only the number of particles at each site matters), see picture:

1 2
. . .

L− 1 L

(If you are having trouble with this exercise just take L = 2.)

(a) Write down the Boltzmann entropy of a given macro state ρn ∈ ( 1
nN)L∩P({1, . . . , L}),

defined as:

Entn(ρn) := kB log #Ωn(ρn), where

Ωn(ρn) :=
{

micro states x ∈ {1, . . . , L}n : macro state 1
n

∑n
i=1 1xi

= ρn
}
,

and kB is the Boltzmann constant.

(b) The Boltzmann entropy blows up as n→∞, so for large particle numbers one usually
takes the average entropy per particle. Calculate this limit (formally):

Ent(ρ) := lim
n→∞

1
nEntn(ρn),

assuming each ρn ∈ ( 1
nN)L ∩ P({1, . . . , L}) and ρn → ρ ∈ P({1, . . . , L}).

Remark : the resulting formula is what physicists usually use as the entropy, whereas
mathematicians usually drop the constant and flip the minus sign.

The Boltzmann entropy is purely combinatoric/information theoretic, so it is only a useful
concept if all sites 1, . . . , L are equally likely. In general one needs something more advanced.
Let X1, X2, . . . be iid random variables with values in the finite set {1, . . . , L}, with proba-

bilities P(X1 = l) =: νl. Now the empirical measure Ln :=
1

n

∑n
i=1 1Xi

is a random variable

in P({1, . . . , L}).
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(c) For an abitrary test ‘function’ f ∈ RL, what is the weak limit of f · Ln as n→∞? No
proof needed, but where does Ln weakly converge to?

(d) Write down the probability that Ln = ρn for a given ρn ∈ ( 1
nN)L ∩ P({1, . . . , L}).

(e) Again assuming ρn → ρ ∈ P({1, . . . , L}), (formally) show that:

lim
n→∞

− 1

n
logP(Ln = ρn) = H(ρ | ν).

(f) In physics, one often has probabilities of the form

νl =
1

ZT
e−Vl/(kBT ),

where Vl is some energy function, T is the temperature, and ZT is a normalisation
constant. Show that

lim
n→∞

−kBT
n

logP(Ln = ρn) = U(ρ)− TEnt(ρ) + const

for some function U(ρ) and a constant not depending on ρ.

Remark : physicists call U(ρ) the internal energy, U(ρ) − TEnt(ρ) the Helmholtz free
energy, and they don’t care about the constant.
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