In exercise sheet 1 we *almost* proved the following essential tool.

Theorem 0.1 (Contraction principle). Assume that the random variables X^n satisfy an LDP in a topological space \mathcal{X} with good rate functional $I : \mathcal{X} \to [0, \infty]$. Define $Y^n := \phi(X^n)$ where $\phi : \mathcal{X} \to \mathcal{Y}$ is a continuous mapping between the two topological spaces \mathcal{X} and \mathcal{Y} . Then Y^n satisfies an LDP with good rate functional $J : \mathcal{Y} \to [0, \infty]$,

$$J(y) := \inf_{x \in \mathcal{X}: \phi(x) = y} I(x).$$

Note: This does not work without the goodness, since ϕ maps compact sets to compact sets, but only the pre-image of a closed set is closed!

1. Let X_1, X_2, \ldots be iid random variables in [-1, 1] with $\text{Law}(X_1) = \nu$, and let $S_n := \sum_{i=1}^n X_i$ be the empirical sum. Use Sanov's Theorem to prove that $\frac{1}{n}S_n$ satisfies an LDP in [-1, 1], with an expression of the rate functional that differs from the one from Cramér's Theorem. (There is no need to prove that the two rate functionals are the same; this follows from uniqueness of large deviation rate functionals!)