Cramér from Sanov

Proposition 0.1. Let $\mathcal{X} \subset \mathbb{R}$ be compact, and $\nu \in \mathcal{P}(\mathcal{X})$. Then:

$$
\begin{equation*}
\inf _{\substack{\rho \in \mathcal{P}(\mathcal{X}): \\ \int x \rho(d x)=y}} \mathcal{H}(\rho \mid \nu)=\sup _{\lambda \in \mathbb{R}} y \lambda-\log \int e^{x \lambda} \nu(d x) . \tag{1}
\end{equation*}
$$

Proof by large deviations. Take iid RV's X_{1}, X_{2}, \ldots, and let $\phi: \mathcal{P}(\mathcal{X}) \rightarrow \mathbb{R}$ be the continuous bounded function $\phi(\rho):=\int x \rho(d x)$, so that $\phi\left(L^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{n} S_{n}$, the empirical average. On the one hand, by Sanov's Theorem the empirical measure $L^{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$ satisfies an LDP with good RF $\rho \mapsto \mathcal{H}(\rho \mid \nu)$, and so by the Contraction Principle $\frac{1}{n} S_{n}$ satisfies an LDP with good RF given by the left-hand side of (1). On the other hand, by Cramér's Theorem, $\frac{1}{n} S_{n}$ satisfies an LDP with good RF given by the right-hand side of (1). The statement follows by uniqueness of rate functionals.

Proof by variational calculus. The left-hand side of (1) is given as a contrained minimisation problem in the Banach space of bounded signed measures, under the contraints that $\rho \geq 0, \int x \rho(d x)=y$ and $\rho(\mathcal{X})=1$. We may neglect the first constraint, since $\mathcal{H}(\rho \mid \nu)$ (and its derivative) automatically blows up when $\rho \nsupseteq 0$. The other constraints are \mathbb{R}-valued equalities, which we pair with two Lagrange multipliers $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. By compactness, lower semicontinuity and boundedness from below of the relative entropy, there exists a minimiser, say $\bar{\rho}$. Under sufficient regularity of this minimiser (which needs to be shown by an approximation argument), the Kuhn-Tucker Theorem says that the following Gateaux derivative must be zero in the minimiser $\bar{\rho}$, i.e.:

$$
0=D_{\rho}\left[\mathcal{H}(\bar{\rho} \mid \nu)+\lambda_{1}\left(y-\int x \bar{\rho}(d x)\right)+\lambda_{2}\left(1-\int \bar{\rho}(d x)\right)\right](x)=\log \left(\frac{d \bar{\rho}}{d \nu}(x)\right)-\lambda_{1} x-\lambda_{2}
$$

and so

$$
\begin{equation*}
\bar{\rho}(d x)=\frac{e^{\lambda_{1} x} \nu(d x)}{\phi}, \quad \phi:=e^{-\lambda_{2}} \tag{2}
\end{equation*}
$$

The two Lagrange multipliers λ_{1}, λ_{2} must be chosen such that the two contraints are satisfied, from which we deduce that

$$
\begin{aligned}
& \phi=\phi\left(\lambda_{1}\right)=\int e^{\lambda_{1} x} \nu(d x), \quad \text { (the MGF from Cramér!), } \\
& y=\int x \bar{\rho}(d x)=\frac{\int x e^{\lambda_{1} x} \nu(d x)}{\phi\left(\lambda_{1}\right)}=\frac{\phi^{\prime}\left(\lambda_{1}\right)}{\phi\left(\lambda_{1}\right)} .
\end{aligned}
$$

From the last line it follows that λ_{1} is optimal in $\sup _{\lambda \in \mathbb{R}} \lambda y-\log \phi(\lambda)$. Plugging in the optimal measure (2) in the relative entropy yields:

$$
\inf _{\substack{\rho \in \mathcal{P}(\mathcal{X}): \\ \int x \rho(d x)=y}} \mathcal{H}(\rho \mid \nu)=\mathcal{H}(\bar{\rho} \mid \nu)=\lambda_{1} \frac{\phi^{\prime}\left(\lambda_{1}\right)}{\phi\left(\lambda_{1}\right)}-\log \phi\left(\lambda_{1}\right)=\lambda_{1} y-\log \phi\left(\lambda_{1}\right)=\sup _{\lambda \in \mathbb{R}} \lambda y-\log \phi(\lambda) .
$$

