1. Let $(\mu_n)_n$ satisfy a large-deviation principle in a metric space \mathcal{X} with good rate functional $I: \mathcal{X} \to [0, \infty]$. Given $f \in C_b(\mathcal{X})$, define the tilted measure, for any measurable set $A \subset \mathcal{X}$:

$$\nu_n(A) := \frac{1}{Z_n} \int_A e^{nf(x)} \mu_n(dx), \qquad \qquad Z_n := \int_{\mathcal{X}} e^{nf(x)} \mu_n(dx).$$

Show that $(\nu_n)_n$ satisfies a large-deviation principle. What is the rate functional J?

- Hint 1: the proof of the Varadhan Lemma also applies when the full space \mathcal{X} is replaced by an arbitrary measurable set A.
- *Hint 2: is the tail condition really needed?*
- Validity check: is $\inf J = 0$?

Lemma 0.1 (Laplace principle on \mathbb{R}). For any measurable set $A \subset \mathbb{R}$ and measurable function $g: \mathbb{R} \to \mathbb{R}$ with $\int_{\mathbb{R}} e^{-g(x)} dx < \infty$,

$$\lim_{n \to \infty} \frac{1}{n} \log \int_A e^{-ng(x)} dx = - \operatorname{essinf}_{x \in A} g(x).$$

Definition 0.2. A sequence $(\mu_n)_n$ satisfies a large-deviation principle in a topological space \mathcal{X} with speed γ_n and rate functional $I : \mathcal{X} \to [0, \infty]$ whenever:

- $\lim_{n\to\infty}\gamma_n=\infty$,
- $\liminf_{n\to\infty} \frac{1}{\gamma_n} \log \mu_n(U) \ge -\inf_U I$ for all open $U \subset \mathcal{X}$,
- $\liminf_{n\to\infty} \frac{1}{\gamma_n} \log \mu_n(G) \leq -\inf_G I$ for all closed $G \subset \mathcal{X}$,
- I is lower semicontinuous.

2. Let $\mu_n(dx) := \sqrt{\frac{\log n}{\pi}} n^{-x^2} dx.$

(a) Prove the large-deviation principle for μ_n, for a speed that gives a non-trivial rate functional. *Hint*: the Laplace principle in T_n really does not need finite Laborate measure are a speed.

Hint : the Laplace principle in \mathbb{R} really does not need finite Lebesgue measure, see e.g. Wikipedia on Laplace principle.

(b) What is the rate functional for the large-deviation principle with speed n?