Theorem 0.1 (Varadhan's Lemma on arbitrary sets). Assume:

- $A \subset \mathcal{X}$ is a measurable subset of a metric or Hausdorff topological vector space,
- $(\mu_n)_{n\in\mathbb{N}}$ satisfies a large-deviation principle in \mathcal{X} with good rate functional $I: \mathcal{X} \to [0, \infty]$,
- $f: \mathcal{X} \to \mathbb{R}$ is continuous,
- f is either bounded from above, or the following tail condition holds:

$$\lim_{M \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log \int_{\{x \in \mathcal{X}: f(x) \ge M\}} e^{nf(x)} \mu_n(dx) = -\infty.$$

Then

$$\lim_{n \to \infty} \frac{1}{n} \log \int_A e^{nf(x)} \mu_n(dx) = \sup_{x \in A} [f(x) - I(x)].$$

Proof. Exactly the same as Varadhan's Lemma on the full space \mathcal{X} , which does not use $\mu_n(\mathcal{X}) = 1$ at all!

We can now use this to prove:

Proposition 0.2 (Exercise 1: Large deviations of a tilted measure). Let $(\mu_n)_n$ satisfy a largedeviation principle in a metric space \mathcal{X} with good rate functional $I : \mathcal{X} \to [0, \infty]$. Given $f \in C_b(\mathcal{X})$, define the tilted measure, for any measurable set $A \subset \mathcal{X}$:

$$\nu_n(A) := \frac{1}{Z_n} \int_A e^{nf(x)} \mu_n(dx), \qquad \qquad Z_n := \int_{\mathcal{X}} e^{nf(x)} \mu_n(dx).$$

Then $(\nu_n)_n$ satisfies a large-deviation principle with rate functional

$$J(x) := I(x) - f(x) - \inf[I - f].$$

Proof. Take any open set $U \subset \mathcal{X}$. We don't need to check the tail condition in Varadhan's lemma since f is bounded. Hence by the above Varadhan Lemma, restricted to the set U:

$$\liminf_{n \to \infty} \frac{1}{n} \log \nu_n(U) = \liminf_{n \to \infty} \frac{1}{n} \log \int_U e^{nf(x)} \mu_n(dx) - \frac{1}{n} \log \int_{\mathcal{X}} e^{nf(x)} \mu_n(dx)$$
$$\geq \liminf_{n \to \infty} \left[\frac{1}{n} \log \int_U e^{nf(x)} \mu_n(dx) \right] + \liminf_{n \to \infty} \left[-\frac{1}{n} \log \int_{\mathcal{X}} e^{nf(x)} \mu_n(dx) \right]$$
$$= \sup_{x \in U} \left[I(x) - F(x) \right] - \sup_{x \in \mathcal{X}} \left[I(x) - F(x) \right] = -\inf_{x \in U} J(x).$$

The same argument can be used for the upper bound.

Remark 0.3. Note that Z_n acts as a normalisation factor to make sure ν_n is a probability measure. This factor yields $-\inf[I - f]$ in the rate functional, which is also a normalisation to make sure that $\inf J = 0...!$

Lemma 0.4 (Laplace principle on \mathbb{R}). For any measurable set $A \subset \mathbb{R}$ and measurable function $g: \mathbb{R} \to \mathbb{R}$ with $\int_{\mathbb{R}} e^{-g(x)} dx < \infty$,

$$\lim_{n \to \infty} \frac{1}{n} \log \int_A e^{-ng(x)} dx = - \operatorname{essinf}_{x \in A} g(x).$$

Definition 0.5. A sequence $(\mu_n)_n$ satisfies a large-deviation principle in a topological space \mathcal{X} with speed γ_n and rate functional $I : \mathcal{X} \to [0, \infty]$ whenever:

• $\lim_{n\to\infty}\gamma_n=\infty$,

- $\liminf_{n\to\infty} \frac{1}{\gamma_n} \log \mu_n(U) \ge -\inf_U I$ for all open $U \subset \mathcal{X}$,
- $\liminf_{n\to\infty} \frac{1}{\gamma_n} \log \mu_n(G) \leq -\inf_G I \text{ for all closed } G \subset \mathcal{X},$
- I is lower semicontinuous.

Proposition 0.6. Let $\mu_n(dx) := \sqrt{\frac{\log n}{\pi}} n^{-x^2} dx$. Then

- (a) μ_n satisfies a large-deviation principle in \mathbb{R} with speed log n and rate functional $I(x) = x^2$,
- (b) μ_n satisfies a large-deviation principle in \mathbb{R} with speed n and rate functional

$$\tilde{I} \equiv 0.$$
 (1)

(c) μ_n satisfies a large-deviation principle in \mathbb{R} with speed $\log \log(n)$ and rate functional

$$\hat{I}(x) = \begin{cases} 0, & x = 0, \\ \infty, & x \neq 0. \end{cases}$$
 (2)

Proof. (a) By the Laplace principle, for any open or closed $A \subset \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1}{\log n} \log \mu_n(A) = \lim_{n \to \infty} \frac{1}{2\log n} \log \left(\frac{\log n}{\pi}\right) + \frac{1}{\log n} \int_A e^{-(\log n)x^2} dx = -\inf_A x^2.$$

(b) and (c) are clear from (a).

Remark 0.7. Both exercises show that Varadhan/Laplace becomes especially simple for probabilities with Lebesgue densities!

Remark 0.8. Trivial large-deviation rate functionals of the form (2) or (1) usually mean that you're not using the right scaling (=large-deviation speed).