1. If $X_n(t)$ is a sequence of random processes such that for any finite set of times, $(X_n(t_1), \ldots, X_n(t_M))$ satisfies the large-deviation principle in \mathcal{Z}^M with good rate functional I_{t_1,\ldots,t_M} , then by Dawson-Gärtner, the path X_n satisfies the large-deviation principle in $\mathcal{Z}^{[0,T]}$ (equipped with the product topology) with good rate functional $I(x) = \sup_{0 < t_1 < \ldots < t_M < T} I_{t_1,\ldots,t_M}(x_{t_1},\ldots,x_{t_M})$. This exercise shows how to argue 'in the other direction'.

Let X_n be a sequence of random processes and fix a finite number of times $0 < t_1 < \ldots < t_M < T$. (In the following, the answer might be "no, because, …".)

- (a) If X_n satisfies the large-deviation principle in $\mathcal{Z}^{[0,T]}$ (with product topology) with good rate functional $\mathcal{I} : \mathcal{Z}^{[0,T]} \to [0,\infty]$, can you show that $(X_n(t_1),\ldots,X_n(t_M))$ satisfies the large-deviation principle in \mathcal{Z}^M ?
- (b) If X_n satisfies the large-deviation principle in $C([0,T]; \mathcal{Z})$ (with supremum norm L^{∞}) with good rate functional $\mathcal{I} : C([0,T]; \mathcal{Z}) \to [0,\infty]$, can you show that $(X_n(t_1), \ldots, X_n(t_M))$ satisfies the large-deviation principle in \mathcal{Z}^M ?
- (c) If X_n satisfies the large-deviation principle in $L^1([0,T]; \mathcal{Z})$ (with L^1 norm) with good rate functional $\mathcal{I} : L^1([0,T]; \mathcal{Z}) \to [0,\infty]$, can you show that $(X_n(t_1), \ldots, X_n(t_M))$ satisfies the large-deviation principle in \mathcal{Z}^M ?
- 2. Let B(t) be a standard Brownian motion and $X_n(t)$ be the solution of the SDE

$$dX_n(t) = b(X_n(t)) dt + \frac{1}{\sqrt{n}} dB(t).$$
 (SDE)

Let us assume that $\phi : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous. In that case it is known that (SDE) has a 'strong solution' and that the mapping $F : n^{-1/2}B \mapsto X_n$ is continuous from $C_{0,\cdot}([0,T])$ to $C_{0,\cdot}([0,T])$. More precisely, f = F(g) is the unique solution f to

$$f(t) = \int_0^t \phi(f(s)) \, ds + g(t), \qquad t \in [0, T].$$

Show that the sequences of processes X_n satisfies a large-deviation principle in $C_{0,\cdot}([0,T])$ with a good rate functional.

Hint: start with Schilder's Theorem and exploit the continuity of F.

Validity check: what is the limit of X_n as $n \to \infty$ and does it minimise the rate functional?

Remark: the more general "Freidlin-Wentzell Theory" also holds for SDE's of the form $dX_n(t) = \phi(X_n(t)) dt + \sqrt{\sigma(X_n(t))/n} dB(t)$ in d dimensions, but this requires more work as the mapping F may fail to be continuous.