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Suppose you want to sample from a target probability distribution P on Rd , which is described in terms of its characteristic

function φP. If d = 1 and φP is integrable w.r.t. the Lebesgue measure we may invert the characteristic function to obtain

the corresponding probability density function fP, which allows to sample from P. However, if d > 1 or φP is not integrable

w.r.t. the Lebesgue measure the inversion of the characteristic function is much more involved or even impossible. The

goal of this master thesis is to develop a novel approach for the simulation of arbitrary characteristic functions via Machine

Learning techniques.

Recently, generative moment matching networks have become popular in Machine Learning. In essence, these models try

to match all moments of a given dataset and samples generated from the neural network. Generative moment matching

networks have been used as an alternative to generative adversarial neural networks to learn the (empirical) distribution of

a given dataset. For example, [2] have used a sample from a given copula as training data to construct a neural network

which imitates the samples from this copula to apply variance reduction techniques for Monte-Carlo simulation. At the

heart of these algorithms is the computation of a so-called maximum mean discrepancy (MMD) metric [1] of the given

dataset and the samples generated from the neural network. The theoretical foundation of these networks is based on the

embedding of P (i.e. a mapping P 7→ hP) into a reproducing kernel Hilbert space of functions [3, 4], where the chosen

kernel uniquely determines the resulting MMD metric.

For certain MMD metrics the distance of two probability distributions P1 and P2 can be expressed as∫
Rd
‖φP1(t)−φP2(t)‖

2
Γ(dt),

where Γ denotes a known probability measure on Rd and acts as a weighting function. Roughly speaking, certain MMD

metrics are weighted squared distances of the characteristic function of the corresponding probability measures. In this

master thesis we will train a neural network with loss function∫
Rd
‖φP(t)− φ̂P(t)‖2

Γ(dt), (1)

where φ̂P(t) = 1
n ∑

n
i=1 exp(−it fθ (Xi)) denotes the empirical characteristic function of n i.i.d. samples

(
fθ (Xi)

)
1≤i≤n from the

neural network fθ . If the function in (1) is differentiable w.r.t. θ one can apply the gradient-descent method to train the

neural network fθ . Assuming that the trained neural network exhibits a small loss according to (1), the samples generated

from the neural network closely resemble the distribution of P. Thus, the trained neural network may be used as a sampler

for observations from P.

The following tasks should be completed during the master thesis

1. Provide a short introduction of kernel mean embeddings of probability distributions into reproducing kernel Hilbert

spaces and the corresponding MMD metrics (no proofs).

2. Compute the gradient in (1) for simple neural network architectures or verify a stochastic gradient descent approach.

3. Implement the corresponding generative moment matching neural networks to sample from various target

probability distributions P.

For more information students can contact florian.brueck@tum.de. The usual requirements for writing a masters thesis at

the Chair of Mathematical Finance apply.
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