

Zentrum Mathematik Lehrstuhl für Finanzmathematik



## Announcement SoSe 2016 Lecture in Mathematical Finance

## **Partial Differential Equations in Finance**

## Prof. Dr. Kathrin Glau

| Area: / Modulnr.:  | Mathematical Finance / MA5720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Course Structure:  | Lecture: 2h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exercises: 2h |
| Content:           | Numerical techniques are widely used in mathematical finance and financial<br>engineering, since most problems arising in this context do not lead to<br>explicit formulas. We concentrate on PDE methods for option pricing. The<br>Black-Scholes PDE serves as a basic equation to study numerical,<br>application-oriented as well as theoretical aspects, such as<br>-Feynman-Kac formula<br>-Different types of options such as European, barrier and lookback options<br>-Weak formulation as parabolic equation in Hilbert spaces and basic<br>theoretical results (e.g. existence and regularity)<br>-Galerkin methods: finite elements and basic convergence results |               |
| Audience:          | MSc Mathematical Finance and Actuarial Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Prerequisites:     | MA4405 (Stochastic Analysis) or MA3702 (Continuous Time Finance), basic skills in Matlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| Literature:        | <ul> <li>Norbert Hilber, Oleg Reichmann, Christoph Schwab, Christoph Winter (2013): Computational Methods for Quantitative Finance, Springer Finance Rüdiger Seydel (2009): Tools for Computational Finance, Springer Yves Achdou and Olivier Pironneau (2005): Computational Methods for Option Pricing, SIAM series in Applied Math</li> <li>Dietrich Braess (2007): Finite Elements: Theory, fast solvers and applications in elasticity theory, Cambridge University Press</li> <li>Lawrence Evans (2010): Partial Differential Equations, American Mathematical Society</li> </ul>                                                                                       |               |
| Certificate:       | Exam or oral Exar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n, 6 CP       |
| Location and Time: | see TUMonline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |

Exercises: see TUMonline